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I\ 1. Hyperspace of all Data
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* Four dimensions of electromagnetic radiation,
Each characterized by range and precision

- Flux (e. g. erglcm?/slhz) - usually at a specific
frequency, wavelength, or energy

 Range: 23 decades (Sun to faintest LSST objects)
* Precision: 5 decades (Kepler 10 pmag)

- Wavelength (both for flux and for velocity)
 Range: 25 decades (3 khz - ISM to 100 TeV - CMB)
* Precision: 10 decades (1 m/s for planet searches)



Hyperspace of all Data

- Astrometry (2-d)

* Precision - RA, Dec (10 decades - 24 parcsec GAIA)
 Angular rotation (11 decades from Earth to MW)

- Time:

 Range: 18 decades (100 ns - pulsars to 6000 years -
JD)

* Precision: (interferometers?)
« Extra dimensions

- 3 additional Stokes parameters
« Extra particles

- Cosmic rays, heutrinos, axions, gravitons,
nheutralinos, ...



Il. Flavors of Calibration
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Flavors of Calibration

 Relative

- “Intercalibration” - measurements from different
Instruments combined as if they were all made with
one instrument; Sl units, if needed are a separate
step.

Halo
subdwarfs
with U-B
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(Sandage
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Flavors of Calibration

 Differential

- Precision measurements by a single instrument
* Kepler (0.00001 mag accuracy)

Kepler 4b Kepler 5b Kepler 6b Kepler 7b Kepler 8b




lll. Science Drivers

Are we “science-limited” or
“calibration-limited”?

 Absolute Calibration - flux

- White Dwarf physics - soon to be limited by absolute
flux calibration

- Dark Energy from SNe - soon to be limited by relative
flux calibration
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Science Drivers

 Absolute Calibration - astrometry and time

- Rotation of Milky Way - Limited by absolute
astrometric calibration

— Pulsars - close to limits of time calibration
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Science Drivers

* Relative Calibration - astrometry

- Proper motions
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Science Drivers

* Differential Calibration - astrometry

- GAIA - Parallaxes and distances of stars out to ~5
Kpc

June

December Foreground
Star

Distant Stars

GAIA spacecraft



IV. The Physics of Calibration

Bring “physics” to the data

e Time
- 10,000 year clock

- Atomic clocks
- GPS (but see Opera experiment)




The Physics of Calibration

 Wavelength - depends on domain

- Radio - frequency synthesizer

- Optical - emission-line lamps, filters,
monochromators




Physics of Calibration

* Flux - depends on domain

- Black bodies (radio to optical) - Temperature
- Synchrotron - voltage and curvature radius
- Test Beams - Bremsstrahlung
— Calorimeters - NIST LOCR

Precision

Thermo-Gauge BB furnace thermometer NIST SURF I



The Physics of Calibration

 Astrometry - Radian - no Sl units, but we still

want an absolute inertial frame
- Milky Way rotates at 5 maslyr

- Sagnac Interferometers (10° maslyr)

- Gravity Probe B (7 maslyr)
- Use Mach's Principle (ICRS)

MNorth—South relativistic drift rate (mas/yr)
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/\V. The Experimental Apparatus

 The three components

- Detector/iInstrument
- Telescope
- Atmosphere

* Ideal world - observe our physics source the
way we observe our object. Reality ...

— Calibrate detector/instrument, telescope, atmosphere
either individually or in different combinations



Radiometers

; . The Experimental Apparatus

iy Detector / Instrument

— Chop between source and thermal load
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 Mosaic Arrays - Flatfielding

QUIET Arrays
Q band

19 elements @ 43 GHz
17 Polarimeters
2 temperature diff.

W band
90 elements @ 95 GHz

84 Polarimeters
6 temperature diff.
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The Experimental Apparatus

Telescope

 Radio - 1st principles to calculate gain

* Optical/X-ray - Calibrate telescope + instrument
+ detector as a single system

- Flux and wavelength calibrations intermingled
- No “source at infinity”

are 0.8 m long and frem 0.6 m to 1.2 m diameter

Calibrated Radio Horn Optical (SDSS) X-ray (Chandra)



The Experimental Apparatus

Atmosphere

« “Water, water everywhere, nor any drop to
drink.” Time-variable. Affects:

- OpaCity Transmittance
1.0 il
- bandpass
- timing
1 | 1=~ T 1 1 T
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VI. The “chain of calibration”

When you can't bring physics to the data

Calibration is a chain of ratios
Answer = (DatalA) * (AIB) * (BIC) * (CID) ... * (physics ref.)

* Fundamental flux standards

- Cass A T

- Mars 51 %o )
- Alpha Lyra / -
— HST White Dwarfs vl

- Crab Nebula

e The standard star network

- Absolute
- Relative




.\, The “chain of calibration”
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 Astrometric standards

- ICRS

- NOMAD transfer standards
* Limited by proper motions




The “chain of calibration”

 Error Creep

- COBE carried 1 mK thermometers, but final result
was accurate to 5 mK

* Cure for Error Creep

- Use multiple, parallel methods for each link of the
chain.

MSX
3 legs of calibration
(Burdick et al. 1996)

Figure 3. NIST-traceable MSX calibration process.
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VIl. Challenges for Large
Surveys and Missions

 Space Missions

Good news - we eliminate the atmosphere
(astronomer)

Bad news - we introduce the atmosphere (earth
scientist)

Ugly news - calibration hardware costs $$$

You may not know what you need to calibrate until
after launch

How can you assure that you will meet calibration
requirements?



\ Challenges for Large Surveys
and Missions

* Array detectors now appearing in microwave
applications (e.g., QUIET, SPT) - flatfielding

techniques from optical now needed in a hew
domain.

 Even In optical larger FOV mean that
techniques that work for single detectors don't
work for large arrays (ghosting, spatially
varying sky intensity)



/. Challenges for Large Surveys
and Missions

 Requirements are more demanding than in the
past

- LSST wants 1% accuracy per observation; in the past
we achieved this with repeat observations

 Radio - we are going to higher frequencies
- Traditional flux calibrators too weak.

 Need new, all-sky (North & South) network of
astrometric, flux standards to fainter limits



/. Challenges for Large Surveys
and Missions

 For a survey, it's not “what is the best that | can
do” but rather “what is the worst that | will
consider acceptable?”

« How do we report data? Bandpass varies
across FOV. Traditional methods of using color
terms no longer adequate as we include objects
with non-smooth spectra (emission lines) and
want <1% accuracy.
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* For may roblems In astrophysics, we are
“calibration-limited,” not “science-limited.”

 The “space” of astronomy data is large, and
while our calibration needs might seem disjoint
from one another, there is actually considerable

24 commonality.




