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Overview

Topics of this talk

m The real-time static potential is introduced to generalize the QCD static
potential to a thermal setting. The physical signature of quarkonium in
an isotropic medium is discussed.

m A calculation of the gg-potential in an anisotropic medium is presented.

m |t will be shown that the potential at fixed density of the medium is
insensitive to the degree of anisotropy.
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REAL-TIME STATIC POTENTIAL

Definition of the static qq-potential for thermal media and
properties in thermal equilibrium



Schwinger-Keldysh Formalism

The real-time path integral is build along the Schwinger-Keldysh time contour
consisting of a Euclidean patch of length 3, as well as a real-time patch ¢
running forward and returning in time.

A location on % is specified by atime ¢ € R and anindex ¢ € 1,2. The
correlator of two operators ¢, ¢ takes a matrix form:

Real-Time Correlators
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Retarded, advanced and symmetric correlators are defined via:
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Real Time Static Potential
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Static Potential (Laine,Philipsen,Romatschke, Tassler,JHEP 0703 (2007) 054)

The static gg-potential in a thermal medium is obtained from a Schrédinger
equation for the gg-correlator C5; in the large time and static mass limit :

V(r) = lim V(¢r)
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The quarkonium resonance is subsequently estimated by solving the
Schrédinger equation for physical quark masses:
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Expansion of the Wilson Loop
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Diagrams contributing to the Wilson-Loop

The Real-Time static potential to ¢'(g?)
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Here GYY is the longitudinal component of the tlme ordered gluon propagator
which can be decomposed as: G11 = Re Gr + B

In the special case of thermal equilibrium the potential takes the form:
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Note: The potential has an imaginary part originating from Landau damping.
The real part is the usual Debye screened potential.



Imaginary Part from Classical Simulations

Magnetic energy density in classical Yang-Mills theory with quasiparticles.

Classical Approximation of Thermal Field Theories

Bare symmetric propagator G's for a bosonic field with coupling g2 ~ F:
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The classical limit # — 0 resums the IR contributions of all diagrams with a
maximal number of symmetric insertions. They capture the long range
physics of a plasma at large T.

Measurement: The existence of an imaginary part of the potential is
confirmed and a significant non-perturbative IR enhancement is observed.
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sof —————— Physical signatures

301 500 VeV << << Quarkonium signatures from the finite
I ] mass Schrédinger equation:

Spectral function Laine et al.,JHEP0801:043

m The spectral function is depicted
for Bottomonium.

m The imaginary part induces a
finite width to the resonance
peak (melting of the resonance).

Potential Laine, JHEP 0705:028

m The Dilepton rate is shown for
Charmonium and Bottomonium.

m A softening of the resonance is
seen for increased temperature.
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ANISOTROPIC MEDIA

The static qG-potential in a plasma with anisotropic momentum
distribution



Anisotropic Media

! Heavy-lon
Collision

Momentum Distribution

In the following the potential will be discussed for an anisotropic plasma
characterized by the static momentum distribution:

f(0) = np(p\/1+&(0, - 1)?)

n p: Thermal Bose Distribution, &: Anisotropy, 7i: Collision axis

Normalization: We don’t know the relation between the particle density and
the parameters {¢&, 5}. Instead we keep the density fixed.

Observation: Any change of the potential is a density effect !

See also the following talk by A.Mocsy and: A. Dumitru, Y. Guo and M. Strickland, “The imaginary part of the
static gluon propagator in an anisotropic QCD plasma,” Phys. Rev. D 79; Y. Burnier, M. Laine and M. Vepsalainen,
“Quarkonium dissociation in the presence of a small momentum space anisotropy,” JHEP-1001, 054.




Normalization
The medium is diluted once ¢ is increased if f(p) is not normalized. The
physical relation between ¢ and the particle density in heavy ion collisions is
very hard to obtain from first principles.

How to keep the particle density fixed ?

The simplest approach is to multiply the momentum distribution function
F(T, &) by a normalization prefactor N (¢). Another approach is to rescale the
temperature T' — T'(§).

m Multiplicative Normalization

To keep the particle density of the medium fixed the distribution function
f(p) is multiplied by the prefactor

N(E)=+1 .
m Landau matching © +e

This matching procedure is often used in the context of hydrodynamic
simulations. The particle density is kept fixed by rescaling T":

T(€) = TR (€) where R(§) = (1 i o+ arctez;g(ﬁ)) .

The results from both schemes are consistent for ¢ < 1.




Calculation

How to obtain the gluon propagator G9(w = 0) ?

The longitudinal part of G11 = Re G + 1G's in the static limit is needed.
Gr is known and G5 is obtained from a Schwinger-Dyson relation.

m Retarded gluon propagator in covariant gauge P\ et 3. Romatschke
v 2 w4 nv 2 ny w2 2%
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with structure functions «(K) — §(K) and
A = (K?—a—)(w?-B) -8k — (n-K)?] and A = K% —a.

A(K) — D(K) form a tensor basis for this system where Lorentz

symmetry is broken by the plasma rest frame and the anisotropy vector.
m Schwinger-Dyson Relation A™°!% Meore. Yaite

The needed Schwinger-Dyson relation [I1s: symmetric self-energy] is:
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Static Limit for ¢ < 1

m Retarded Propagator
It is straightforward to obtain the retarded propagator in the static limit:
k2 4+m?2 + mg{
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Effective masses [0x = Z(n, k)]
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Note that ni, = mz/m p where m p is the isotropic Debye mass.
m Schwinger-Dyson Relation

The calculation of the symmetric propagator is much more difficult. It
can be shown however that only one contraction of Gg and Is is
relevant:

G = G . % . G-



Symmetric Propagator

The symmetric self energy has the following form in the static limit:

il4” = 8mg° N~ / i 500 f(P)(1+ f(P+K))S(Vp - Vi),

where v, = p/p. Using the static limit of the retarded propagator and the
Schwinger-Dyson relation the symmetric propagator is obtained.

Symmetric Propagator in the static limit
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Having obtained all needed parts of the gluon propagator the gg-potential can
finally be calculated. The symmetric propagator contributes the imaginary
part of the potential again.



Results for ¢ =1
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m No Normalization

This case implies a specific relation between the particle density and
the anisotropy. The medium is diluted quickly with increased anisotropy
and the (perturbative) vacuum potential is approached.

m Fixed particle density

The change in the potential is very small compared to the isotropic
result. The change observed in the upper case is a density effect.



Conclusions

m Thermal Potential
The static ¢g-potential in a thermal medium and the

ensuing quarkonium resonance in equilibrium were
discussed.
m Quarkonium in an Anisotropic Plasma
The static potential was calculated for an anisotropic
plasma using a non-equilibrium Schwinger-Dyson relation.
m Role of Particle Density and Anisotropy
The ¢g-potential is sensitve to the density of the medium.
The anisotropy of the medium does not play a role as long
as the density is kept fixed.

Thanks for your attention !



