

Big Picture

Three major paradigms for particle physics beyond the standard model

Supersymmetry "Logos"

From the Greek: reason, word

Strong dynamics, extra dimensions "Stratus"

From the Latin: a cover or spread; low-lying clouds

Multiverse "Chaos"

From the Greek: formlessness, confusion

Outline

"It is better to uncover a little, than to cover a lot."

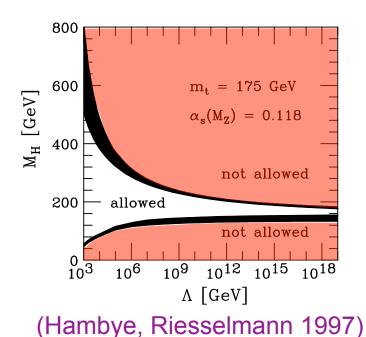
V. Weisskopf

- 1. Motivation for new physics at the TeV scale
- 2. Strong Higgs sector
- 3. Composite Higgs/Little Higgs
- 4. Extra dimensions
- 5. Multiverse

Motivation

Effective Field Theory

An old idea: approximate theory using only degrees of freedom that can be excited at low energy


E.g. QED (e^{\pm}, γ) valid for $E \ll m_{\mu}$

Standard model <u>breaks down</u> at high energies

- ⇒ must be effective theory
- Gravity: $M_{\rm Planck} \sim 10^{19} \; {\rm GeV}$
- Higgs self-interactions

Also lots of concrete motivation for physics beyond standard model

Neutrinos, dark matter, baryogenesis, strong CP problem, gauge coupling unification, origin of flavor,...

Effective Standard Model

What effective theory describes our present understanding of strong/electroweak physics?

Not the standard model! We haven't found the Higgs...

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}}(\mathcal{N}^{0}, A_{\mu}, W_{\mu}^{\pm}, Z_{\mu}, G_{\mu}, q, \ell)$$
 (unitary gauge)

Equivalent to nonlinearly realized $SU(2)_W \times U(1)_Y \rightarrow U(1)_{\rm EM}$

Expansion in powers of $\frac{E}{4\pi v}\sim \frac{E}{\mathrm{TeV}}$

Example: WW scattering

Higgs Sector

Effective standard model <u>breaks down</u> at TeV scale ⇒ new physics below TeV!

Higgs boson is only one possibility...

Maybe the only appearance of Higgs at LHC

Naturalness

Not a question of "canceling UV divergences..."

Dependence of effective parameters on (more) fundamental ones

$$\mathcal{L}_{\rm SM} = -m_H^2 H^{\dagger} H + \cdots$$

 $H^{\dagger}H$ invariant under all symmetries*

 $\Rightarrow m_H \sim \text{ scale of new physics}$

E.g. grand unification:

$$X \to \Delta m_H^2 \sim \frac{g_{\text{GUT}}^2}{16\pi^2} M_X^2 \sim (10^{15} \text{ GeV})^2$$

^{*}Except supersymmetry

Is SUSY Natural?

Higgs quartic coupling:
$$\lambda \sim g^2 + \underbrace{\frac{3y_t^4}{16\pi^2} \ln \frac{m_{\tilde{t}}}{m_t}}$$

 $m_{h^0}^2 > 114 \; {\rm GeV} \; \; {\rm requires} \; \; m_{\tilde{t}} \gtrsim 1 \; {\rm TeV}$

$$\begin{array}{ccc} & & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{ccc} & \tilde{t} & \\ & & \\ \end{array} \end{array} \Rightarrow \Delta m_H^2 \sim \frac{3y_t^2}{16\pi^2} m_{\tilde{t}}^2 \sim (1 \text{ TeV})^2$$

⇒ 1% tuning in MSSM

Exactly the problem SUSY was meant to solve...

Naturalness Sector

Naturalness breaks down at TeV scale

⇒ new physics at TeV scale?

- SUSY?
- Strong electroweak symmetry breaking?
- Composite Higgs?

All have problems...

Just the standard model?

Dark Matter

Another hint for new physics at the TeV scale

Thermal weak-scale relic
$$\Rightarrow \Omega \sim 0.1 \left(\frac{\sigma_{\rm ann} v}{\rm pb}\right)^{-1}$$

Standard collider signature: missing energy

Many models, wide range of predictions (including <u>no</u> collider signatures)

Summary

Expect new physics at TeV colliders

Higgs sector

Required

Naturalness sector Highly recommended

Dark matter

Suggested

Anything else is a welcome surprise...

Strong Higgs Sector

Classic Technicolor

Weinberg 1976; Susskind 1976

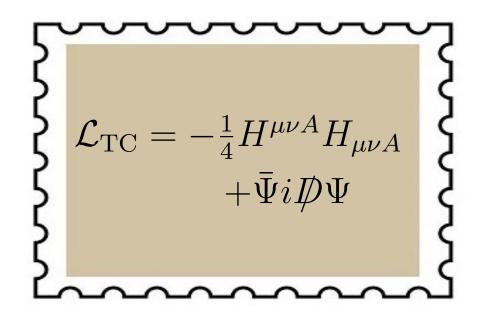
Copy QCD...

New SU(N) gauge force strong at TeV scale

$$\Psi_L = \underbrace{\begin{pmatrix} U_L \\ D_L \end{pmatrix}}_{SU(2)_W}$$
 doublet

$$\Psi_R = \underbrace{\begin{pmatrix} U_R \\ D_R \end{pmatrix}}_{SU(2)_W}$$
 singlet

$$\Psi_L = \underbrace{\begin{pmatrix} U_L \\ D_L \end{pmatrix}}_{SU(2)} \qquad \Psi_R = \underbrace{\begin{pmatrix} U_R \\ D_R \end{pmatrix}}_{CU(2)} \qquad Y(U_R) = Y(\Psi_L) + \frac{1}{2}$$


$$Y(D_R) = Y(\Psi_L) - \frac{1}{2}$$

$$\langle \bar{\Psi}_{La} \Psi_R^b \rangle = \Lambda_{\rm TC}^3 \delta_a{}^b \qquad \Lambda_{\rm TC} \sim {\rm TeV}$$

$$\Psi_L U_R \sim H$$
 $\bar{\Psi}_L D_R \sim H^*$

⇒ same symmetry breaking pattern as SM

Is Technicolor Natural?

No singlet operator with dimension < 4

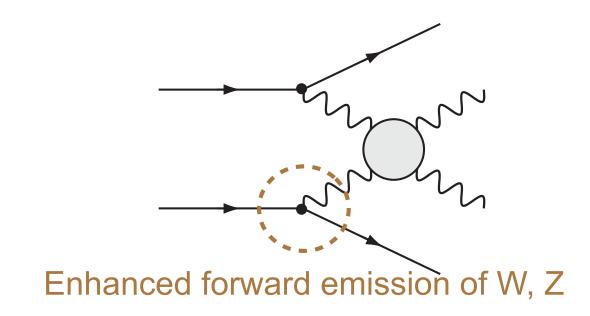
(c.f.
$$\mathcal{L}_{\mathrm{SM}} = -m_H^2 H^\dagger H + \cdots$$
)

Technifermion mass $\bar{\Psi}\Psi$ forbidden by gauge invariance

Technicolor Signatures

Higgs sector = strong TeV resonances

E.g. WW scattering


$$\frac{1}{2}$$

QCD suggests vector resonances most prominent Spin 0 "composite Higgs" may be absent or obscure

$$f_0(600)$$
 or σ
$$f_0(600)$$
 T-MATRIX POLE \sqrt{s} Note that $\Gamma \approx 2 \text{ Im}(\sqrt{s_{pole}})$.

MACCE (MeV) SOCUMENT ID TECN COMMENT (400–1200)— $i(250–500)$ OUR ESTIMATE PDG 2010

WW Scattering @ LHC

A model-independent signal for strong Higgs sector

(Chanowitz, Gaillard 1984)

Cut	Value for keeping events
Leptonic W P_T	$P_T > 320 \text{ GeV}$
Hadronic W P_T	$P_T > 320 \text{ GeV}$
Hadronic W mass	$66.09 < M < 101.89 \mathrm{GeV}$
Y-scale	1.55 < Y - scale < 2.0
Top veto	$130 < M_{W+jet} < 240 \text{ GeV}$
Tag Jets	$P_T > 20 \text{ GeV}, E > 300 \text{ GeV}, 2.0 < \eta < 4.5$
Hard Scatter P_T	$P_T < 50 \text{ GeV}$
Number of mini-jets ($P_T > 15 \text{ GeV}$ with $ \eta < 2.0$)	0

5σ discovery with 30 fb⁻¹ for models with resonances

E. Stefanidis ATLAS Thesis (2007)

Problems with Technicolor

- Top quark
- Flavor mixing
- Precision electroweak

Flavor in Technicolor

Standard model → technicolor

$$H \to \bar{\Psi} \Psi$$
 (dim($\bar{\Psi} \Psi$) = 3 solves naturalness problem)


$$\mathcal{L}_{SM} = y_t \bar{Q}_L H t_R + \cdots \rightarrow \frac{1}{\Lambda_t^2} \underbrace{(\bar{Q}_L t_R)(\bar{\Psi}\Psi)}_{\text{dim} = 6} + \cdots$$

Effective 4-fermion interaction can arise from heavy particle exchange (c.f. Fermi theory)

 $\Lambda_t =$ scale where effective flavor theory breaks down \sim few TeV

⇒ must address flavor near TeV scale

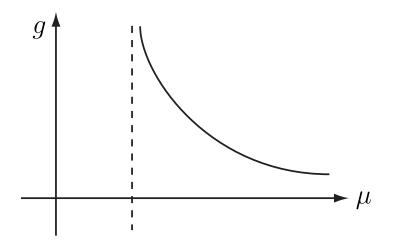
Top in Technicolor

Topcolor

Hill 1991

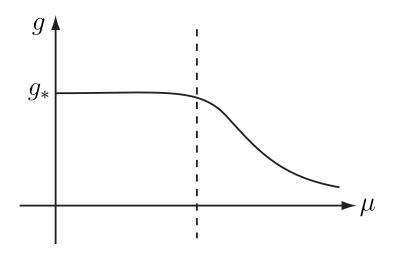
Walking/conformal technicolor

Conformal Technicolor


H= operator in Higgs sector Consider general values of $d=\dim(H)$

- $d \ge 1$ (unitarity)
- $\dim(\bar{Q}_L H t_R) = 3 + d$ \Rightarrow want d as small as possible
- Want $\dim(H^{\dagger}H) \geq 4$ (naturalness) $\Rightarrow d \leq 2$? Not necessarily...

Possible in conformal (scale invariant) theories


Conformal Fixed Point

β function in QCD with N_c colors and N_f flavors:

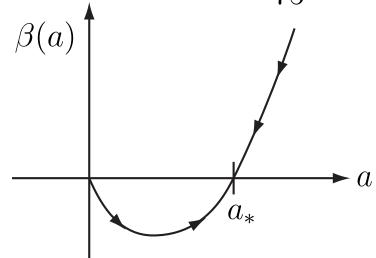
$$N_f \sim 1$$

 $N_f \sim 1$ \Rightarrow confining

$$N_f \simeq \frac{11}{2} N_c$$

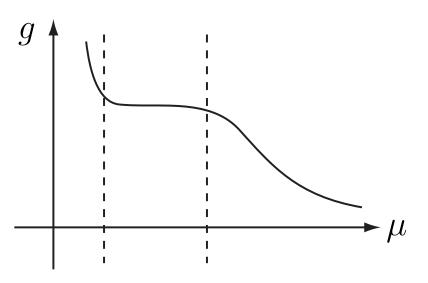
⇒ conformal

Under active study by lattice community


Conformal Window

$$a=rac{N_c g^2}{16\pi^2}= ext{ perturbative expansion parameter}$$

$$x = \frac{N_f}{N_c} = \frac{11}{2} - \epsilon$$
 continuous for large N_c, N_f


$$\beta(a) \simeq -3\epsilon a^2 + \frac{3}{4}(75 - 26\epsilon)a^3 + \cdots$$

 \Rightarrow perturbative fixed point at $a_* = \frac{4\epsilon}{75}$ for $\epsilon \ll 1$

Expect "conformal window" for $x_c \le x < \frac{11}{2}$ Lattice studies suggest $x_c \simeq 4$

Conformal Breaking

• Walking technicolor It "just does it" Plausible at $x = x_c$

(Holdom 1985; Appelquist, Karabali, Wijewardhana 1986; Yamawaki, Bando, Matumoto 1986)

• Conformal technicolor: "forced out" (ML, Okui 2004)

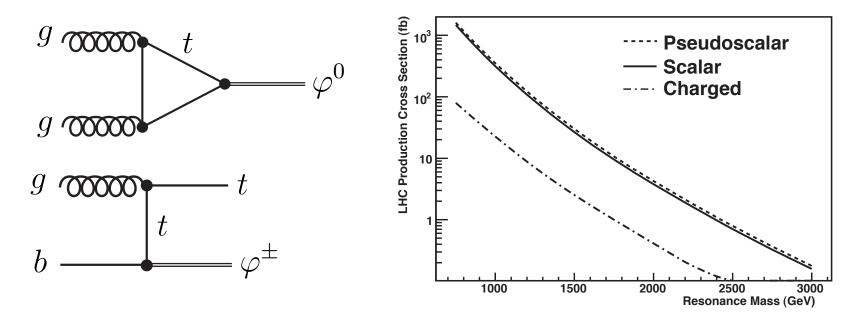
$$\Delta \mathcal{L} = -m\bar{\chi}\chi$$
 $\chi = \text{sterile technifermion}$

Soft breaking of spacetime symmetry triggers electroweak symmetry breaking (c.f. SUSY)

Status of Flavor?

$$\Lambda_t \sim \text{TeV} \left(\frac{\text{TeV}}{m_t}\right)^{1/(d-1)} \sim \begin{cases} 3 \text{ TeV} & \dim(H) = 3\\ 10 \text{ TeV} & \dim(H) = 2\\ 50 \text{ TeV} & \dim(H) = 1.5 \end{cases}$$

Still wanted: a complete theory of flavor without large flavor-changing neutral currents

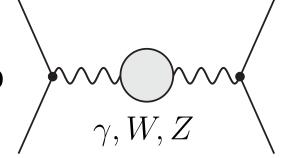

Complete theory still lacking (Something I'm working on...)

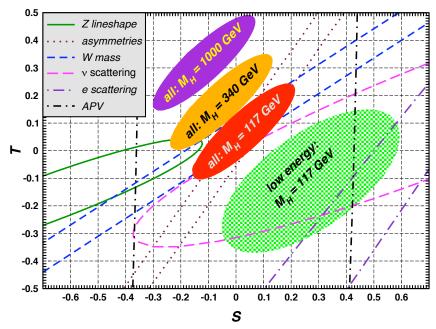
More Signals

$$\mathcal{L}_{\text{eff}} = \frac{1}{\Lambda_t^{d-1}} \bar{Q}_L H t_R + \cdots$$

 \Rightarrow production of strong resonances: $J=0, CP=\pm, I=0,1$

 $\varphi \to WW$ suppressed for $I=1 \Rightarrow$ can be narrow Many interesting signals:

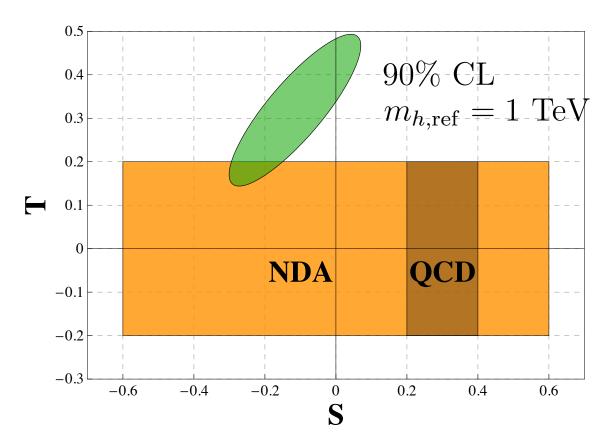

$$\varphi^0 \to \bar{t}t, \ W^+W^-Z, \ ZZZ, \dots \qquad \varphi^+ \to \bar{b}t, \ W^+W^+W^-, \ W^+ZZ, \dots$$
(Evans, ML 2009)


Precision Electroweak

Effective theory below TeV contains gauge-violating terms

$$\Delta \mathcal{L}_{\text{eff}} = \frac{1}{2} \Delta M^2 W_3^{\mu} W_{3\mu} - \frac{1}{2} \epsilon W_3^{\mu\nu} B_{\mu\nu} + \cdots$$

⇒ leading corrections to



$$\rho, T \propto \Delta M^2$$
$$S \propto \epsilon$$

Erler, Langacker 2010

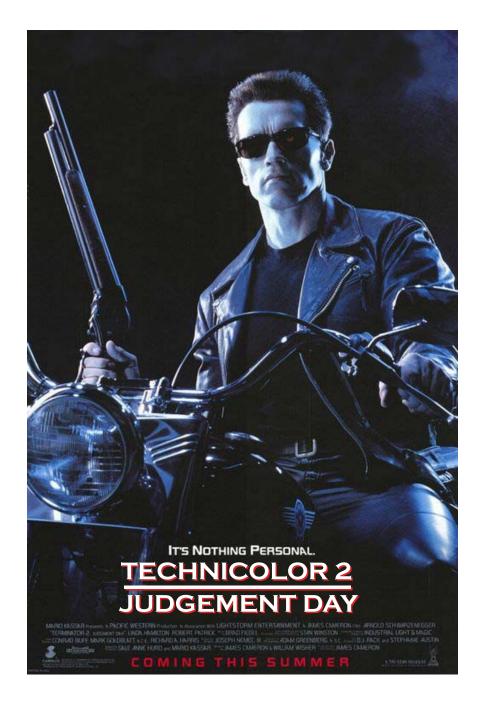
Strong Higgs Sector

QCD: assume scaled-up QCD dynamics, use QCD data

NDA: all interactions → strong at TeV

No reliable prediction for walking/conformal theories

Not ruled out!


Summary

Mandarin: crisis = danger + opportunity

- A compelling solution to the naturalness problem $\dim(H^\dagger H) \geq 4$
- Top quark $\dim(H) < 3$? Topcolor?
- Flavor and precision electroweak do not rule it out
- Distinctive signals at LHC

Experiment will Decide...

