The ATLAS Trigger Algorithms Upgrade and Performance in Run-2

Catrin Bernius (SLAC)

DPF 2017, 31. July 2017

From Run-1 to Run-2

- The ATLAS trigger system operated successfully in Run-1 (2009-1012)
- In Run-2 (2015-2018), overall trigger rates have increased by a factor of ~5
 - A factor of ~2 due to the energy increase
 - A factor of 2-3 due to the luminosity increase

	√s [TeV]	Peak luminosity [cm ⁻² s ⁻¹]	Peak pile- up
2012	8	~ 7 x 10 ³³	~ 35
2016	13	~1.4 x 10 ³⁴	~ 45

- Options to cope with the increase in trigger rates:
 - Increased trigger thresholds → potential loss of interesting physics
 - Increased trigger rejection power → improved hardware/ software

Catrin Bernius (SLAC)

- Increase output rate \rightarrow challenge for offline computing

From Run-1 to Run-2

Luminosity (10³³ cm⁻² s⁻¹)

- The ATLAS trigger system operated successfully in Run-1 (2009-1012)
- by a factor of ~5
 - A factor of ~2 due to the energy increase
 - A factor of 2-3 due to the luminosity increase

	√s [TeV]	Peak luminosity [cm ⁻² s ⁻¹]	Peak pile- up
2012	8	~ 7 x 10 ³³	~ 35
2016	13	~1.4 x 10 ³⁴	~ 45
2017	13	∼2 x 10 ³⁴	~60

- Options to cope with the increase in trigger rates:
 - Increased trigger thresholds \rightarrow potential loss of interesting physics
 - Increased trigger rejection power \rightarrow improved hardware/software
 - Increase output rate \rightarrow challenge for offline computing

Overview of the ATLAS Trigger System

Level-1

- Hardware-based; Input from calorimeters & muon system
- Rate and latency limit set by detector & trigger hardware
- Dead-time applied if limits are exceeded
 - Preventive veto to stop the front-end buffers from overflowing
- High Level Trigger (HLT):
 - **Software-based**; Access to all detectors including tracking
 - Average processing time set by HLT farm size
 - 1 kHz average output rate set by computing model (bandwidth, disk space, Tier0 size, ...)

Overview of the ATLAS Trigger System

The ATLAS Trigger System: Level-1

The ATLAS Trigger System: HLT

High Level Trigger (HLT)

- Input from Level-1 in form of a Regionof-Interest (Rol)
 - Geometrical region in η x Φ with information about type of object (EM, MU, TAU,...) and passed thresholds (p_T, E_T)
 - More CPU/time expensive reconstruction algorithms can be run in Rol, e.g. tracking

Fast TracKer (FTK)

- Currently being installed, under commissioning in 2017
- Hardware-based full event track finding using associate-memory chips (pattern matching)
- Processes events at 100 kHz make fitted track available to HLT
- To replace/augment CPUexpensive software based tracking in the HLT
- Key feature for highluminosity running

Electron & Photon Trigger Improvements

- Electron triggers:
 - L1 EM isolation tightened to keep single electron trigger threshold low
 - New data-driven smooth LH electron tunes using 2016 data
 - Sharp turn-on curves and good agreement with MC comparison
- Photon triggers:
 - Isolation at L1 and HLT for low-mass di-photon searches to keep thresholds
 low

Tau & Muon Trigger Improvements

• Tau triggers (hadronic):

<u>Muon triggers:</u>

- L1Topo used by default for di-tau and lepton+tau triggers
- Various improvements and changes to online tau energy scale corrections, online tau identification (BDT) to reflect offline changes, high-pT (> 400 GeV) selection for higher efficiencies

p_T determination using the Cathode Strip Chambers (CSC) to improve the resolution in the forward region (2.0 < |η| < 2.4)

Jets - Global Sequential Calibration in Small-R Jets

- Jet trigger turn-on curves driven by relative HLT/offline jet resolutions
 - If online resolution closer to the offline \rightarrow sharper turn-on curve
 - Sharper turn-on curve \rightarrow less wasted rate below the plateau in the turn-on curve
 - <u>Small R-jet trigger (R = 0.4):</u>
 - Global Sequential Calibration (GSC) calibration for majority of jet triggers
 - Applies additional Jet Energy Scale (JES) corrections using tracking and jet shape information
 - Reduces the flavor dependence of the response and improves the jet energy resolution

Jets - Trimming & Mass Cuts in Large-R Jets

- Large-R jet trigger (R = 1.0):
 - Jets are wider → more susceptible to pileup
 - Make use of offline grooming techniques to reduce the effects of pile-up
 - Trimming:
 - Re-cluster jet constituents with R = 0.2 to form sub-jets
 - ★ Remove sub-jets if p_T^{sub}/p_T^{jet} < 4%</p>
 - Slightly altered from offline (5% → 4%) to recover lost efficiency
 - Produces stable mass/p_T vs pile-up
 - As mass distribution is stable, can apply mass cuts and discriminate QCD vs W/Z/H/t
 - Reduced pile-up dependence, improved resolution
 - Brings online closer to offline → sharper
 turn-on curve
 Catrin Bernius (SLAC)

Missing Transverse Energy (ME_T)

- Pile-up mitigation is the main challenge for E_T^{miss} triggers
 - In 2016: used *mht* algorithm which is based on negative p_T sum of all jets reconstructed by the anti-k_T jet finding algorithm
 - New algorithm in 2017: PUFit which calculates E_T^{miss} as the negative pT sum of all calorimeter topological clusters corrected for pile-up, pile-up estimated event-by-event and subtracted
 - Excellent performance in high pile-up regimes

- Many improvements in algorithm performance and robustness across all signature groups to deal with increasing rates due to luminosity and pile-up increase
 - Only highlighted a few of them here!
- FTK currently being installed and commissioned in 2017 → further hardware improvement to the TDAQ System
- Run-1 and ongoing Run-2 have shown that ATLAS trigger system & strategy for event selection is very robust and able to adapt to the changing LHC conditions
 - Dedicated list of triggers (trigger menu) with various backups in place
 - See Heather Russell's talk on "The ATLAS Trigger Menu design for higher luminosities in Run 2"
- Ready for the remaining two years of Run-2 Operations with increased luminosities and pile-up!