Projection Matching Algorithm for track 3D reconstruction - LArSoft implementation

D. Stefan, R. Sulej NCNR Warsaw

Another approach to build 3D things in TPC

up side down: Projection Matching Algorithm

Algorithm features

- no explicit hit-to-hit associations between 2D planes
- simultaneous use of information from all planes
- 3D objects driven by 2D parts, not only isolated points
 - individual 2D planes can have some missing information (due to dificult track orientation, hit/cluster inefficiency, hardware, ...)
- 3D optimization can take into account also 3D points: vertices, feature points, ... that were found with another algorithms

Typical use

- associate two clusters -> optimize 3D -> validate in the 3rd 2D view
- initial clusters pair do not need to be precisely corresponding
- grow / complete the track by adding compatible clusters
- stich tracks, find and conect full 3D structures -> reoptimize 3D
- do analysis: initial directions, track dE/dx, PID, energy, ...

PMA in LArSoft

- PMA engine in: larreco/RecoAlg/PMAlg/*
- Algorithm interface class: larreco/RecoAlg/ProjectionMatchingAlg.h&cxx
 - few basic functions to create, extend and validate tracks
 - few basic parameters to controll algorithm
 - more to be added (to expose settings used in pma::Track3D)
 - weights used to combine information from different planes
 - weights assigned to 3D points from other algorithms
 - functionality for freezing track nodes (shower reco needs this)
 - ...
- Module to create tracks from clusters: larreco/TrackFinder/PMAlgTrackMaker_module.cc
 - very basic logic to loop over clusters, first quick example and test of the algorithm implementation
 - loop starts from the largest cluster (any plane), finds best matching cluster by drift time span (any other plane), validates track (if 3rd plane available)
 - many other logics possible we'll try, and we encourage others as well

Long, high energy muons crossing the detector, 5mu/event, large sample:

Systematic efficiency measure needed, of course.

Single, low energy protons (700MeV/c, ~30cm), dQ/dx reconstruction:

Automatic flip of the track direction failed for a few protons with short projection in Collection, to be corrected with Induction views.

Hit reconstruction to be tuned:

- Hit peak time delays due to deconvolution to be optimized
- Try to improve params of hit reconstruction for tracks ~parallel to the drift direction.

Decaying Kaon, just example of a few-track event:

Summary

- many thanks to Tingjun!!!
- it is a pleasure to work in LArSoft environment
- basic algorithm is up and running
- efficiency measures to be applied (many are for sure ready!)
- our first goal is shower initial direction -> more functionality for this purpose is coming soon
- validation of 3D in the 3rd plane gives potential to apply the algorithm without disambiguation in "wrapped" planes
- any comments and suggestions are very welcome, we would be also glad to help those interested in using the algorithm