
LArSoft CI System Overview

Vito Di Benedetto
(Fermilab)

CI Team
Vito Di Benedetto
Michele Fattoruso

Vladimir Podstavkov

LArSoft Workshop
June 20, 2017

V. Di Benedetto 2LArSoft Wokrshop

Outline

● Introduction

● Specifying and configuring tests

● Running tests

● Obtain results

● Upcoming new features

● Getting help

V. Di Benedetto 3LArSoft Wokrshop

Introduction

● Continuous Integration (CI)

● why Continuous Integration

● definitions

● CI system overview

V. Di Benedetto 4LArSoft Wokrshop

Introduction: Continuous Integration (CI)

● Continuous integration is a software engineering practice
in which changes in a software code are immediately
tested and reported.

● The goal is to provide rapid feedback helping identifying
defects introduced by code changes as soon as possible.

● Issues detected early on in development are typically
smaller, less complex and easier to resolve.

V. Di Benedetto 5LArSoft Wokrshop

Introduction: why Continuous Integration

● Bad habits in code development
can break your code...
…or someone else's code!

V. Di Benedetto 6LArSoft Wokrshop

●Sometime also good practice in code development can
lead to some hidden bug...

Introduction: why Continuous Integration

V. Di Benedetto 7LArSoft Wokrshop

● The more code you write without testing, the more
paths you have to check for errors.

● Keep on a straight path with proper code testing.

Introduction: why Continuous Integration

V. Di Benedetto 8LArSoft Wokrshop

● CI phase
● Is a single activity executed by the CI system
● Examples are: checkout, build, install, ...

● CI workflow
● Is a collection of CI phases
● There are CI workflows used to test experiment code

standalone, to update reference files used by CI tests,
and so on

● CI build
● Is the job that executes a specific CI workflow on a

build node

Introduction: definitions

V. Di Benedetto 9LArSoft Wokrshop

● Unit test
● Is a test that verifies a single “unit” or logical concept of the

system

● Is fully automated (you want be able to run the test in an
automatic procedure)

● Is independent (you want be able to run the test in parallel)

● Runs fast (you want quick feedback)

● Is trustworthy (if the test fails you know that the code is broken)

● It is good practice to have at least one unit test for each
functionality of the system

Introduction: definitions

V. Di Benedetto 10LArSoft Wokrshop

● CI test or integration test
● Is the logical extension of unit test
● Tests the behavior of “combined units” of the system
● It verifies that the (major) parts of the system work well together
● You can have:

● Regression test: runs existing CI tests against modified code
to make sure that what used to work doesn't break

● Reproducibility test: makes sure that running the code using
the same input always generate the same output

● Back-compatibility test: make sure that new code is able to
access data files produced by previous code releases

● Validation test: make sure that new code produce meaningful
results

● Test suite
● Is a collection (suite) of CI tests

Introduction: definitions

V. Di Benedetto 11LArSoft Wokrshop

Introduction: CI system overview

V. Di Benedetto 12LArSoft Wokrshop

Specifying and configuring tests

● CI workflow configuration

● Integration test configuration

● CI validation and grid support

V. Di Benedetto 13LArSoft Wokrshop

CI workflow configuration

The CI workflow configuration drives all the actions to be
performed by the CI build

[default]
workflow = ${LAR_WORKFLOW:-defaultwf}
notify_email_to = larsoft_build@fnal.gov
proxy_vo = /fermilab/uboone
build_db_uri = http://dbweb6.fnal.gov:8080/LarCI/app

[defaultwf] ### workflow section
experiment = LArSoft uBooNE DUNE LArIAT ArgoNeuT
qualifier = ${LAR_QUALS:-e14:prof}
ci_test_lists = quick_test_uboonecode quick_test_dunetpc
quick_test_lariatsoft quick_test_argoneutcode
personality = mrb
proxy_flag = true
phases = _eval_n checkout_x_modules build unit_test install ci_tests
grid_cfg = ${LAR_GRIDWFCFG:-cfg/grid_workflow.cfg}
modules = larsoft … uboonecode dunetpc lariatsoft argoneutcode

[mrb] ### personality section
define what the CI phases do:
_eval_n: setup the code environment
…

#checkout: instruction to checkout the code
…

#build: instruction to build the code
…

unit_test: instruction to run unit tests
…

install: instruction to install the code
…

#ci_tests: instruction to run the CI tests

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg

● The CI workflow configuration has
three basic sections:

● default:global section, selects the
CI workflow to use, set the report
mailing list, proxy VO, …

● workflow: defines personality, list
of CI tests to run, list of CI phases,
code modules to test, CI validation
config file (grid_cfg), …

● personality: defines what each
CI phase does

Excerpt of the CI workflow configuration

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg

V. Di Benedetto 14LArSoft Wokrshop

Integration test configuration

● The CI test configuration file is a INI‑formatted file
● It is parsed using the ConfigParser python module

● It is located in the experiment code repository at:
<exp code>/test/ci/ci_tests.cfg

● It has three type of sections
● [DEFAULT] is used to define global variables that can

be used in the test section
● [test <testname>] is used to configure the test

<testname>
● [suite <suitename>] is used to specify a collection of

tests to run in the same job

V. Di Benedetto 15LArSoft Wokrshop

Integration test configuration

● Basic layout for ci_tests.cfg file

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg

Defnition for a named 'testA' that uses the output from 'testB'
[test testA]
script=$<PRODUCT>_DIR/test/testA.sh
args= -a qualA -b qualB
requires= testB

Defnition for 'testB'
[test testB]
script=$<PRODUCT>_DIR/test/testB.sh
…

Defnition for 'testC”
[test testC]
script = $PRODUCT_DIR/test/testC.sh
…

Defnition of test suite 'test_suiteA'
[suite test_suiteA]
testlist = testA testC

Test definition blocks

Test suite definition

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg

V. Di Benedetto 16LArSoft Wokrshop

Integration test configuration

● Basic layout for ci_tests.cfg file

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg

Defnition for a named 'testA' that uses the output from 'testB'
[test testA]
script=$<PRODUCT>_DIR/test/testA.sh
args= -a qualA -b qualB
requires= testB

Defnition for 'testB'
[test testB]
script=$<PRODUCT>_DIR/test/testB.sh
…

Defnition for 'testC”
[test testC]
script = $PRODUCT_DIR/test/testC.sh
…

Defnition of test suite 'test_suiteA'
[suite test_suiteA]
testlist = testA testC

Set dependencies
between tests

Pre-requisites will
run first

“testB” will run as part
of the suite because it
is declared as
dependency of “testA”

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg

V. Di Benedetto 17LArSoft Wokrshop

CI validation and grid support

● Validation tests usually require thousands of events
● For this purpose the grid can help to get the job done

● The CI allows to build a specific version of the code (tag, branch, …) and to
use it to run jobs on the grid

● Data produced by the CI validation are stored in a configurable dCache area
for further analysis
● Also the code tarball and job logs are stored in dCache

● Provides stats about job usage resources
● Send an email report when the CI validation is complete and results are
available

● Ability to track jobs using POMS
https://cdcvs.fnal.gov/redmine/projects/prod_mgmt_db/wiki
(Production Operations Management Service) a service which will assist the
Production Teams and the Analysis groups of the experiments in their
scientific computational work

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

https://cdcvs.fnal.gov/redmine/projects/prod_mgmt_db/wiki
https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

V. Di Benedetto 18LArSoft Wokrshop

CI validation and grid support

● The CI validation phase has its
 own configuration file to set up
● It lives in lar_ci/cfg/grid_workflow.cfg
● It consist of two types
 of sections:

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

[<stage>] section
that specifies stage properties

[global] section that defines
the experiment workflow

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

V. Di Benedetto 19LArSoft Wokrshop

CI validation and grid support
More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

stages

#jobs, #events/job

mailing list to report the
completion of the CI validation phase

dCache area used to store
exp code used to be validated,
data, plots and logs produced by
the experiment workflow

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

V. Di Benedetto 20LArSoft Wokrshop

CI validation and grid support
More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

Stage FHiCL file

Stage jobs resources:
expected lifetime, memory, disk

{

{Stage executable

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

V. Di Benedetto 21LArSoft Wokrshop

Running tests

● There are three methods to test the code
● Automatic trigger of a CI build

● Occurs when users git push in the develop branch of the repository
● Tests the develop branch of LArSoft + experiment
● Default CI workflow consist of:

● checkout, build, unit tests (174), CI tests (29 quick CI tests)
● Manual trigger of a CI build

● Developers can run a script to trigger a CI build to test specific
branches
● Developer can specify branches repository by repository
● Default branch is “develop”

● NOTE: all code used for tests must be committed and pushed to
the central repositories (a security requirement)

● Running tests locally
● The code can be tested locally to verify that it doesn't break anything
● This can be achieved using the test_runner script

see https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki for more details

More details at https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki

https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki
https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki

V. Di Benedetto 22LArSoft Wokrshop

Obtaining results

● The CI web application components

● Which information you can get

● Email report

V. Di Benedetto 23LArSoft Wokrshop

● The CI web application is a web interface that easily provides
information about the status of the code.
It is available at the URL: http://lar-ci-history.fnal.gov/LarCI/app

● In the next few slides we will walk through the CI web interface
● I'll describe:

● its different components
● the available information you can access

Wiki documentation available at
https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki#How-to-monitor-the-status-of-your-build

Obtaining results

http://lar-ci-history.fnal.gov/LarCI/app
https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki#How-to-monitor-the-status-of-your-build

V. Di Benedetto 24LArSoft Wokrshop

● In-line documentation:

link to wiki pages with description of the CI web application components

Obtaining results

V. Di Benedetto 25LArSoft Wokrshop

● CI Build details

● Hovering the mouse on the “Build” box
you will get a tooltip that shows:

● Trigger reason (T:)
● Workflow (W:)
● Personality (P:)

Obtaining results

V. Di Benedetto 26LArSoft Wokrshop

● Checkout details

● Hovering the mouse on the “checkout”
box you will get a tooltip that shows:

● repository name
● git description revision

Obtaining results

V. Di Benedetto 27LArSoft Wokrshop

● Unit test details

● Hovering the mouse on the “unit_test”
box you will get a tooltip that shows:

● Unit tests stats:
● total number;
● succeeded;
● failed;
● skipped.

Obtaining results

V. Di Benedetto 28LArSoft Wokrshop

● CI tests details

● Hovering the mouse on the “ci_test” box
you will get a tooltip that shows:

● CI tests stats:
● total number;
● succeeded;
● warning;
● failed;
● Skipped.

● Summary of CI tests status.

Obtaining results

V. Di Benedetto 29LArSoft Wokrshop

Obtaining results: CI tests view

● The “CI tests view”

● Which information you can get here

To access the CI tests view,
click on the ci_tests box

V. Di Benedetto 30LArSoft Wokrshop

Obtaining results: CI tests view

V. Di Benedetto 31LArSoft Wokrshop

Obtaining results: CI tests view
Zoom out the view to easily see details

V. Di Benedetto 32LArSoft Wokrshop

Navigation bar to easily navigate
through CI phases

Obtaining results: CI tests view

V. Di Benedetto 33LArSoft Wokrshop

 Time picker to select data range

Obtaining results: CI tests view

V. Di Benedetto 34LArSoft Wokrshop

Marker to indicate the selected CI build
i.e. this is the data point belonging to
the CI build clicked on the main page
of the CI web application

Obtaining results: CI tests view

V. Di Benedetto 35LArSoft Wokrshop

Check box to select
the series to show

Obtaining results: CI tests view

V. Di Benedetto 36LArSoft Wokrshop

Range selector to
zoom in the graph

Obtaining results: CI tests view

V. Di Benedetto 37LArSoft Wokrshop

● Access specific CI test logs and stats

To access ci test details
click on the specific ci test link

Obtaining results: CI tests view

Each CI phase has its own log

V. Di Benedetto 38LArSoft Wokrshop

This page provides:
● Graphs that show resources usage
● stdout and stderr logs
● Backtrace log in case the test crashes
● Statistics like: memory peak (max RSS),
%CPU, elapsed time, …
● Each statistic is a link to the associated
graph

Obtaining results: CI tests details

V. Di Benedetto 39LArSoft Wokrshop

● Graph of RSS memory peak:
uboonecode g4 stage as an example

Obtaining results: CI tests details

V. Di Benedetto 40LArSoft Wokrshop

● Graph of RSS memory peak:
uboonecode reco stage 1 as an example

Obtaining results: CI tests details

V. Di Benedetto 41LArSoft Wokrshop

● The list of CI tests is sorted by status severity
● The CI test status corresponds to a color:
 red=failure; orange=warning; green=succeeded

● Each CI test link provides logs for the test

Obtaining results: CI tests view

V. Di Benedetto 42LArSoft Wokrshop

Obtaining results: Unit test view

● The “Unit test view”

● Which information you can get here

To access the unit tests view,
click on the unit_tests box

V. Di Benedetto 43LArSoft Wokrshop

Logs

Obtaining results: Unit test view

Stats

V. Di Benedetto 44LArSoft Wokrshop

Obtaining results: CI validation view
● uBooNE calorimeter validation as an example

V. Di Benedetto 45LArSoft Wokrshop

●uBooNE calorimeter validation as an example

Experiment workflow stages

Progress bars show
the number of events
available for each stage,
this is based on the
number of successful jobs

● The CI validation can process a workflow with as many stages as needed
● The stages can be grouped together in the same grid job to minimize I/O

and improve grid job efficiency

Hovering the mouse
over the stages box
a tooltip shows
the status of that stage jobs

Obtaining results: CI validation view

V. Di Benedetto 46LArSoft Wokrshop

● uBooNE calorimeter validation as an example

● CI validation phase inherits the
CI functionality to upload and show plots

● This provides the user an easy access
to CI validation results

● If something looks suspicious the user
have access to the job outputs for a
further analysis

Obtaining results: CI validation view

V. Di Benedetto 47LArSoft Wokrshop

● By clicking on a stage box more info are available
● jobs stats which include: resident memory peak, elapsed time, file size
● job status details

jobs status details
for each stage

jobs stats plots
for each stage

Obtaining results: CI validation view

V. Di Benedetto 48LArSoft Wokrshop

● Use different mailing lists according to the CI build
status.

● Possible CI build status are:
● successful: any issue reported
● warning: the code run properly, but some check on the

output is not successful
● failed: something is not working properly, it can be a failure

in the build of the code, or running unit/integration tests
● There is still the possibility to send a report whatever is the

status of the CI build

● Each experiment can choose a set of mailing lists to
receive email reports according to the CI build status

● The mailing list can also be a list of individual user email
● Users that trigger a manual CI build will receive an email

report

Obtaining results: email report

V. Di Benedetto 49LArSoft Wokrshop

Obtaining results: email report

● Provides quick information in the subject;
● details about the CI build;

V. Di Benedetto 50LArSoft Wokrshop

● Support “warning” status for CI tests;
● details about CI tests that are not successful

If some phase of the CI build
is not successful

there is a link that points
to the logs in the CI Web App

Warning means:
experiment code runs successful,
but some check on the output
is not successful

Obtaining results: email report

V. Di Benedetto 51LArSoft Wokrshop

Upcoming new features

● CI workflow reorganization
● each experiment code will be tested independently each
other, but still depend on the build/test of LArSoft

● CI build will test only code from experiments that can be
potentially affected by a given commit

● CI email report will provide independent info for each
experiment

● Support to get email report for individual CI tests
● CI Web App reorganization

● LArSoft and experiment code test information are shown
in dedicated tabs

● Add support for memory profiling to
intercept memory leak

V. Di Benedetto 52LArSoft Wokrshop

Getting help

●The redmine wiki documentation is available at:
 CI: http://cdcvs.fnal.gov/redmine/projects/ci/wiki
 LArCI: http://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki

● The CI web application provides tooltips and online
documentation

● To request new features open a SNOW ticket
Scientific Computing Services > Scientific Production Processing >
Continuous Integration

● For support/question send an email to: ci_team@fnal.gov

● As last resort, talk to LArSoft Team

http://cdcvs.fnal.gov/redmine/projects/ci/wiki
http://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki

V. Di Benedetto 53LArSoft Wokrshop

Thank you

for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

