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•Relic abundance and thermal DM
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The Standard Model
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We have observed a new 
boson with a mass of  

125.3 ± 0.6 GeV 
at  

4.9 ! significance ! 
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(as of July 4th, 2012)

ATLAS: Status of SM Higgs searches, 4/7/2012 52 

These accomplishments are the results of more than 20 years of   

talented work and extreme dedication by the ATLAS Collaboration,  

with the continuous support of the Funding Agencies 

More in general, they are the results of the ingenuity,  

vision and painstaking work of our community 

(accelerator, instrumentation, computing, physics)   

ICHEP 

Melbourne 
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5.0 � excess at mH~126.5  

ATLAS: Status of SM Higgs searches, 4/7/2012 

2012 data-�������
����	�� 

5 

Peak luminosity in 2012: 
~ 6.8 x1033 cm-2 s-1 

~ 90% 
of the delivered luminosity used for these results 
(slightly larger fraction than in 2011):  
� in spite of the very fresh data  
� in spite of the harsher conditions 
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5.0 � excess at mH~126.5  

ATLAS: Status of SM Higgs searches, 4/7/2012 

2012 data-�������
����	�� 

5 

Peak luminosity in 2012: 
~ 6.8 x1033 cm-2 s-1 

~ 90% 
of the delivered luminosity used for these results 
(slightly larger fraction than in 2011):  
� in spite of the very fresh data  
� in spite of the harsher conditions 

Do we now have a complete microscopic 
description of nature?
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Extra stuff

22. Big-Bang nucleosynthesis 3
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Figure 22.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big-Bang nucleosynthesis [14] − the bands show the 95% CL range. Boxes
indicate the observed light element abundances (smaller boxes: ±2σ statistical
errors; larger boxes: ±2σ statistical and systematic errors). The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL).

June 18, 2012 16:19

12 21. The Cosmological Parameters
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Figure 21.1: This shows the preferred region in the Ωm–ΩΛ plane from the
compilation of supernovae data in Ref. 17, and also the complementary results
coming from some other observations. See full-color version on color pages at end of
book. [Courtesy of the Supernova Cosmology Project.]

Two major studies, the ‘Supernova Cosmology Project’ and the ‘High-z Supernova
Search Team’, found evidence for an accelerating Universe [16], interpreted as due to
a cosmological constant, or to a more general ‘dark energy’ component. Current results
from the Supernova Cosmology Project [17] are shown in Fig. 21.1 (see also Ref. 18).
The SNe Ia data alone can only constrain a combination of Ωm and ΩΛ. When combined
with the CMB data (which indicates flatness, i.e., Ωm + ΩΛ ≈ 1), the best-fit values are
Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Future experiments will aim to set constraints on the cosmic
equation of state w(z). However, given the integral relation between the luminosity
distance and w(z), it is not straightforward to recover w(z) (e.g., Ref. 19).

July 14, 2006 10:37

(Scott will give more 
details)
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a cosmological constant, or to a more general ‘dark energy’ component. Current results
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July 14, 2006 10:37

•27% of universe energy/matter is 
a new type of (non-baryonic) 
matter
•68% is a new type of energy 
(cosmological constant)
•SM is 5%

(Scott will give more 
details)
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Coma Cluster

Evidence for Dark Matter

90% of the matter in the cluster doesn’t shine
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Coma Cluster

Evidence for Dark Matter

90% of the matter in the cluster doesn’t shine

(there)
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Evidence for Dark Matter

Something invisible is holding stars in orbit 
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Evidence for Dark Matter

Something invisible is holding stars in orbit 

(here and there)
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Evidence for Dark Matter

Hot plasma of hydrogen atoms and photons

Thursday, 5 December 13



(everywhere)Evidence for Dark Matter

Hot plasma of hydrogen atoms and photons
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Recap on DM’s (gross) properties

•DM makes up 27% of the universe
•Gravitates like ordinary matter, but is non-baryonic 
•Is dark i.e. neutral under SM (not coloured, or charged)
•Does not interact much with itself
•Does not couple to massless particle
•Was not relativistic at time of CMB
•Is long lived  

���

m�

<⇠ 3GeV�3
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Recap on DM’s (gross) properties

•DM makes up 27% of the universe
•Gravitates like ordinary matter, but is non-baryonic 
•Is dark i.e. neutral under SM (not coloured, or charged)
•Does not interact much with itself
•Does not couple to massless particle
•Was not relativistic at time of CMB
•Is long lived  

���

m�

<⇠ 3GeV�3

No such particle exists in the SM

Thursday, 5 December 13
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Evidence for DM locally?

Figure 2: Velocity distribution functions: the left panels are in the host halo’s restframe, the
right panels in the restframe of the Earth on June 2nd, the peak of the Earth’s velocity relative
to Galactic DM halo. The solid red line is the distribution for all particles in a 1 kpc wide shell
centered at 8.5 kpc, the light and dark green shaded regions denote the 68% scatter around the
median and the minimum and maximum values over the 100 sample spheres, and the dotted line
represents the best-fitting Maxwell-Boltzmann distribution.

are independent of location and persistent in time and hence reflect the detailed assembly
history of the host halo, rather than individual streams or subhalos. The extrema of the
sub-sample distributions, however, exhibit numerous distinctive narrow spikes at certain
velocities, and these are due to just such discrete structures. Note that although only
a small fraction of sample spheres exhibits such spikes, they are clearly present in some
spheres in all three simulations. The Galilean transform into the Earth’s rest frame washes
out most of the broad bumps, but the spikes remain visible, especially in the high veloc-
ity tails, where they can profoundly a�ect the scattering rates for inelastic and light DM
models (see Section 4).
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Via Lactea II

[Bovy and Tremaine 1205.4033]
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Via Lactea II

ρDM ∼ 0.3 GeV cm
−3*

per unit detector mass at a DM direct detection experiment is given by [22]

dR

dER
=

NT mN ρχ

2µ2
Nχ mχ

∫

vmin

d3"v
f("v,"vE)

v
σN F 2(ER) , (2.1)

where mN ≈ AmP is the nucleus mass with mP the proton mass and A the atomic number;

F (ER) is the nuclear form factor and accounts for the fact that the cross section drops as

one moves away from zero momentum transfer; the two-parameter Fermi charge distribution

is used to calculate F (ER) throughout this paper [23]; NT is the number of target nuclei per

unit mass, given by NT = NA/A with Avogadro’s number, NA = 6.02 × 1026 kg−1; σN is the

cross section to scatter of a nucleus, and µNχ is the reduced mass of the DM-nucleus system.

The DM mass is mχ and we take the local DM density to be ρχ = 0.3 GeV/cm3. The velocity

of the dark matter onto the (Earth-borne) target is "v. The Earth’s velocity in the galactic

frame, "vE , is the sum of the Earth’s motion around the Sun [22] and the Sun’s motion in the

galaxy [24]. We assume the WIMP velocity distribution is Maxwell-Boltzmann with velocity

dispersion v0 = 220 km/s. Thus,

f("v,"vE) =
1

(π v2
0)

3/2
e−("v+"vE)2/v2

0 . (2.2)

As a function of time in the galactic frame, the Earth’s velocity is vE ≈ 227+14.4 cos [2π
(

t−t0
T

)

]

km/s, with T = 1 year and t0 is around June 2nd. The DM velocity distribution is cut-off

at the galactic escape velocity. Thus, the upper limit of the integration in (2.1) is given by

|"v + "vE| ≤ vesc, and the lower limit, since we will consider elastic scatters, is given by

vmin =

√

mNER

2µ2
Nχ

. (2.3)

The current allowed range for the galactic escape velocity [25] is 498 km/s ≤ vesc ≤ 608

km/s. For concreteness we set vesc = 500 km/s. Increasing this value slightly increases our

allowed parameter space, but the general features remain unchanged. Because of different

energy detection efficiencies for different detectors, a quench factor fq is introduced to relate

the observed recoil energy, ĒR, to the actual recoil energy ER, ER = ĒR/fq. This allows one

to convert Eq. (2.1) to the experimental differential spectrums as dR/dĒR = 1/fq dR/dER.

For example, we take the quench factor fq = 0.085 for the iodine element in the DAMA

experiment.

In the usual calculation the nuclear cross section σN is related to the nucleon scattering

cross section, σp, by,

σN =
(Zfp + (A − Z)fn)2

f2
p

µ2
Nχ

µ2
nχ

σp , (2.4)

where fp,n are the coupling strengths of DM to protons and neutrons and µnχ is the DM-

nucleon reduced mass. Here however, we wish to work explicitly with the nuclear scattering

cross section, and leave relating it to the microscopic Lagrangian to later, section 3. In

– 3 –

f(v) ∝ d3v e−(v/v0)2

v0 = 220 km s
−1

[Bovy and Tremaine 1205.4033]
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Via Lactea II

*    a factor of two±

ρDM ∼ 0.3 GeV cm
−3*

per unit detector mass at a DM direct detection experiment is given by [22]
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where mN ≈ AmP is the nucleus mass with mP the proton mass and A the atomic number;

F (ER) is the nuclear form factor and accounts for the fact that the cross section drops as
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unit mass, given by NT = NA/A with Avogadro’s number, NA = 6.02 × 1026 kg−1; σN is the

cross section to scatter of a nucleus, and µNχ is the reduced mass of the DM-nucleus system.

The DM mass is mχ and we take the local DM density to be ρχ = 0.3 GeV/cm3. The velocity

of the dark matter onto the (Earth-borne) target is "v. The Earth’s velocity in the galactic

frame, "vE , is the sum of the Earth’s motion around the Sun [22] and the Sun’s motion in the

galaxy [24]. We assume the WIMP velocity distribution is Maxwell-Boltzmann with velocity

dispersion v0 = 220 km/s. Thus,

f("v,"vE) =
1

(π v2
0)

3/2
e−("v+"vE)2/v2

0 . (2.2)

As a function of time in the galactic frame, the Earth’s velocity is vE ≈ 227+14.4 cos [2π
(

t−t0
T

)

]

km/s, with T = 1 year and t0 is around June 2nd. The DM velocity distribution is cut-off

at the galactic escape velocity. Thus, the upper limit of the integration in (2.1) is given by

|"v + "vE| ≤ vesc, and the lower limit, since we will consider elastic scatters, is given by

vmin =

√

mNER

2µ2
Nχ

. (2.3)

The current allowed range for the galactic escape velocity [25] is 498 km/s ≤ vesc ≤ 608

km/s. For concreteness we set vesc = 500 km/s. Increasing this value slightly increases our

allowed parameter space, but the general features remain unchanged. Because of different

energy detection efficiencies for different detectors, a quench factor fq is introduced to relate

the observed recoil energy, ĒR, to the actual recoil energy ER, ER = ĒR/fq. This allows one

to convert Eq. (2.1) to the experimental differential spectrums as dR/dĒR = 1/fq dR/dER.

For example, we take the quench factor fq = 0.085 for the iodine element in the DAMA

experiment.

In the usual calculation the nuclear cross section σN is related to the nucleon scattering

cross section, σp, by,

σN =
(Zfp + (A − Z)fn)2

f2
p

µ2
Nχ

µ2
nχ

σp , (2.4)

where fp,n are the coupling strengths of DM to protons and neutrons and µnχ is the DM-

nucleon reduced mass. Here however, we wish to work explicitly with the nuclear scattering

cross section, and leave relating it to the microscopic Lagrangian to later, section 3. In

– 3 –

f(v) ∝ d3v e−(v/v0)2

v0 = 220 km s
−1

[Bovy and Tremaine 1205.4033]
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So far all probes have been 
gravitational in nature

What about other interactions?
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DM as a thermal relic “The weak shall inherit the Universe”

If there are DM-SM couplings leading to annihilation/
production, DM will be produced in the hot early universe
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FIG. 14: In superWIMP scenarios, a WIMP freezes out as usual, but then decays to a superWIMP,
a superweakly-interacting particle that forms dark matter.

IV. SUPERWIMPS

In superWIMP scenarios [32, 33], a WIMP freezes out as usual, but then decays to a
stable dark matter particle that interacts superweakly, as shown in Fig. 14. The prototypical
example of a superWIMP is a weak-scale gravitino produced non-thermally in the late
decays of a weakly-interacting next-to-lightest supersymmetric particle (NLSP), such as a
neutralino, charged slepton, or sneutrino [32, 33, 56, 57, 58, 59, 60, 61]. Additional examples
include axinos [23, 62] and quintessinos [63] in supersymmetry, Kaluza-Klein graviton and
axion states in models with universal extra dimensions [64], and stable particles in models
that simultaneously address the problem of baryon asymmetry [65]. SuperWIMPs have
all of the virtues of WIMPs. They exist in the same well-motivated frameworks and are
stable for the same reasons. In addition, in many cases the WIMP and superWIMP masses
have the same origin. In these cases, the decaying WIMP and superWIMP naturally have
comparable masses, and superWIMPs also are automatically produced with relic densities
of the desired order of magnitude.

As noted above, superWIMPs exist in many different contexts. We concentrate here on
the case of gravitino superWIMPs. In the simplest supersymmetric models, supersymme-
try is transmitted to standard model superpartners through gravitational interactions, and
supersymmetry is broken at a high scale. The mass of the gravitino G̃ is

mG̃ =
F√
3M∗

, (11)

16
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•A weak scale annihilation x-sec gives correct abundance
•Mass range is

•DM makes up 23% of the universe
•Gravitates like ordinary matter, but is non-baryonic 
•Is dark i.e. neutral under SM (not coloured, or charged)
•Does not interact much with itself
•Does not couple to massless particle
•Was no relativistic at time of CMB
•Is long lived  

IF DM is a thermal relic:

10 MeV <⇠ m� <⇠ 70 TeV
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WIMPs and BSM physics

•Higgs hierarchy problem “predicts” new states at weak 
scale with/without SM charge 
•Flavour constraints require high scale (1000 TeV) 
suppression of FCNC operators
•“New physics parity”
•LPOP often has possibility to be a DM WIMP

•WIMPs e.g. SUSY neutralino, KK-mode of UED, 
techni-baryons, lightest T-odd little Higgs 
particle, LPOPs....
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Dark Matter Direct Detection
(the theorist’s perspective)
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An exciting time, many experiments
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XENON100: New Spin-Independent Results

Upper Limit (90% C.L.) is 2 x 10-45 cm2  for 55 GeV/c2 WIMP

Wednesday, July 18, 2012

Aim: to understand everything that 
goes into this plot
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Aim: to understand everything that 
goes into this plot

5

0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV

ee

x-ray from 127Xe.

0 10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

lo
g 10

(S
2 b/S

1)
 x

,y
,z

 c
or

re
ct

ed
  

S1 x,y,z corrected (phe)  

3 6 9 12 15 18 21 24 27 30 keVnr

1.3

1.8

3.5

4.6
5.9

7.1

keVee

FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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“The Master formula”

d�

dER
= F 2

N (ER)F
2
�(ER)

mN

µv2
�N

For the case of inelastic �N ! �0N scattering it is given by

v
min

=
1p

2mNEd

✓
mNEd

µ�N
+ �

◆
, (2)

where µ�N = m�mN/(m� +mN) is the reduced mass of the nucleus–DM system, with mN

and M� the nucleus and DM masses respectively, while � is the mass di↵erence between �0

and �. The same equation also applies to elastic �N ! �N scattering, with � = 0. As
observed in ref. [18] for appropriately chosen � one can suppress the signal in experiments
where DM scatters on lighter nuclei, while not significantly a↵ecting the rate in DAMA
(see also [35, 36]). Namely for � � mNEd/µ�N the minimal velocity v

min

falls with mN .
If the signal is coming from the tails of the velocity distributions, the di↵erence between
lighter and heavier nuclei, such as germanium vs. iodine, can be significant (for v

min

> v
esc

the scattering is completely absent). Furthermore, the inelasticity also suppresses the low
energy signal, changing the shape of the expected event rate from an exponentially falling
function of the recoil energy to a bump-like signal at higher energies. This, in addition,
improves the fit to the DAMA modulated signal energy spectrum.

The di↵erential cross section for scattering on a target nucleus is (per assumption) given
by the spin independent (SI) and spin dependent (SD) contributions, which are convention-
ally written as (see e.g. [37])

d�

dEd
=

mN

2µ2

�Nv
2

�
�SIF 2(Ed) + �SDS(Ed)

�
, (3)

where �SI,SD are the integrated SI and SD cross sections for DM scattering on nucleus,
but with form factors factored out. For the SI form factor F (Ed) we use [38] F (Ed) =
3e�2s2/2[sin(r) � r cos(r)]/(r)3, with s = 1 fm, r =

p
R2 � 5s2, R = 1.2A1/3 fm,

 =
p
2mNEd (and q2 ' �2). The SD form factor S(Ed) is computed according to ref. [39]

for 133Cs (abundant in the CsI crystals used by the KIMS experiment) and according to
ref. [40] for all other nuclei.

Even though the form factors were factored out of the definitions of �SI,SD, these quan-
tities still depend on nuclear structure through isospin content (the number of protons vs.
neutrons). The SI cross section is thus

�SI =
[Zfp + (A� Z)fn]2

f 2

p

µ2

�N

µ2

�p

�SI

p , (4)

with A the atomic mass number, Z the charge of the nucleus, fp,n the SI DM couplings to
proton and neutron respectivelly, µ�p the reduced DM–proton mass, and �SI

p the SI cross
section for scattering of DM on a proton. In the fits we will assume fp = fn for definiteness
and quote results in terms of �SI

p . Since the ratio A/Z is similar for di↵erent nuclei this
choice mostly a↵ects only the overall value of �SI

p , while it does not a↵ect the relative sizes
of contributions from di↵erent experiments. It is easy to rescale our results for di↵erent
values of fp and fn through �SI

p ! �SI
p /(Z/A+ (1� Z/A)fn/fp)2.

The SD cross section depends in addition on the spin J of the nucleus

�SDS(Ed) =
4µ2

�N⇡

3µ2

�pa
2

p(2J + 1)
[a2

0

S
00

(q) + a
0

a
1

S
01

(q) + a2
1

S
11

(q)]�SD

p , (5)
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section for scattering of DM on a proton. In the fits we will assume fp = fn for definiteness
and quote results in terms of �SI

p . Since the ratio A/Z is similar for di↵erent nuclei this
choice mostly a↵ects only the overall value of �SI

p , while it does not a↵ect the relative sizes
of contributions from di↵erent experiments. It is easy to rescale our results for di↵erent
values of fp and fn through �SI

p ! �SI
p /(Z/A+ (1� Z/A)fn/fp)2.

The SD cross section depends in addition on the spin J of the nucleus

�SDS(Ed) =
4µ2

�N⇡

3µ2

�pa
2

p(2J + 1)
[a2

0

S
00

(q) + a
0

a
1

S
01

(q) + a2
1

S
11

(q)]�SD

p , (5)
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5

0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV

ee

x-ray from 127Xe.
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FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].

LUX

3

FIG. 2. Ionization yield versus recoil energy in all detectors
included in this analysis for events passing all signal criteria
except (top) and including (bottom) the phonon timing crite-
rion. The curved black lines indicate the signal region (-1.8�
and +1.2� from the mean nuclear recoil yield) between 7 and
100 keV recoil energies for detector 3 in Tower 4, while the
gray band shows the range of charge thresholds across de-
tectors. Electron recoils in the detector bulk have yield near
unity. The data are colored to indicate recoil energy ranges
(dark to light) of 7–20, 20–30, and 30–100 keV to aid the
interpretation of Fig. 3.

of data taking (⇠24 hours ).
In yield, events were required to be within +1.2� and

�1.8� from the mean of the nuclear recoil yield. Can-
didate events were also required to have phonon pulse
timing consistent with a nuclear recoil. In order to take
advantage of the fact that the timing parameters are
better measured at high energies, the phonon timing
data-selection cut was optimized in three energy bins:
7–20 keV, 20–30 keV, and 30–100 keV [23]. Fig. 1 shows
the nuclear-recoil e�ciency i.e., the estimated fraction of
nuclear recoils at a given energy that would be accepted
by these signal criteria, measured using nuclear recoils
from 252Cf calibration. The abrupt changes in e�ciency
are due to the di↵erent detector thresholds and changes
to the timing cuts in the three energy bins. Signal ac-
ceptance was measured using nuclear recoils from 252Cf
calibration. After applying all selection criteria, the ex-
posure of this analysis is equivalent to 23.4 kg-days over
a recoil energy range of 7–100 keV for a WIMP of mass
10 GeV/c2.

Neutrons from cosmogenic or radioactive processes
can produce nuclear recoils that are indistinguishable
from those from an incident WIMP. Simulations of the
rates and energy distributions of these processes using
GEANT4 [24] lead us to expect < 0.13 false candidate
events (90% confidence level) in the Si detectors from
neutrons for this exposure with all e�ciencies included.

A greater source of background is the misidentifica-
tion of surface electron recoils, which may su↵er from re-
duced ionization yield and thus contribute events to the
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FIG. 3. Normalized ionization yield (standard deviations
from the nuclear recoil band centroid) versus normalized
phonon timing parameter (normalized such that the median
of the surface event calibration sample is at -1 and the cut
position is at 0) for events in all detectors from the WIMP-
search data set passing all other selection criteria. The black
box indicates the WIMP candidate selection region. The data
are colored to indicate recoil energy ranges (dark to light) of
7–20, 20–30, and 30–100 keV. The thin red curves on the bot-
tom and right axes are the histograms of the data, while the
thicker green curves are the histograms of nuclear recoils from
252Cf calibration data; both are normalized to have the same
arbitrary peak value.

WIMP-candidate region; these events are termed “leak-
age events”. Prior to looking at the WIMP-candidate
region (unblinding), the expected leakage was estimated
using the rate of single scatter events with yields consis-
tent with nuclear recoils from a previously unblinded Si
dataset [25] and the rejection performance of the timing
cut measured on low-yield multiple-scatter events from
133Ba calibration data. Two detectors used in this anal-
ysis were located at the end of detector stacks, so scatters
on their outer faces could not be tagged as multiple scat-
ters. The rate of surface events on the outer faces of these
two detectors were estimated using their single-scatter
rates from a previously unblinded dataset presented in
[25] and the multiples-singles ratio on the interior de-
tectors. The final pre-unblinding estimate for misidenti-
fied surface electron-recoil event leakage into the signal
band in the eight Si detectors was 0.47+0.28

�0.17(stat.) events.
This initial leakage estimate informed the decision to un-
blind. After unblinding, we developed a Bayesian es-
timate of the rate of misidentified surface events based
upon the performance of the phonon timing cut mea-
sured using events near the WIMP-search signal region
[21, 25]. Multiple-scatter events below the electron-recoil
ionization-yield region from both 133Ba calibration and
the WIMP-search data were used as inputs to this model.
Because the WIMP-search sample is sparser compared
to the calibration data, the combined estimates are more
heavily weighted towards the calibration data leakage es-
timates. Additionally the leakage estimate is corrected
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and +1.2� from the mean nuclear recoil yield) between 7 and
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tectors. Electron recoils in the detector bulk have yield near
unity. The data are colored to indicate recoil energy ranges
(dark to light) of 7–20, 20–30, and 30–100 keV to aid the
interpretation of Fig. 3.
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In yield, events were required to be within +1.2� and

�1.8� from the mean of the nuclear recoil yield. Can-
didate events were also required to have phonon pulse
timing consistent with a nuclear recoil. In order to take
advantage of the fact that the timing parameters are
better measured at high energies, the phonon timing
data-selection cut was optimized in three energy bins:
7–20 keV, 20–30 keV, and 30–100 keV [23]. Fig. 1 shows
the nuclear-recoil e�ciency i.e., the estimated fraction of
nuclear recoils at a given energy that would be accepted
by these signal criteria, measured using nuclear recoils
from 252Cf calibration. The abrupt changes in e�ciency
are due to the di↵erent detector thresholds and changes
to the timing cuts in the three energy bins. Signal ac-
ceptance was measured using nuclear recoils from 252Cf
calibration. After applying all selection criteria, the ex-
posure of this analysis is equivalent to 23.4 kg-days over
a recoil energy range of 7–100 keV for a WIMP of mass
10 GeV/c2.

Neutrons from cosmogenic or radioactive processes
can produce nuclear recoils that are indistinguishable
from those from an incident WIMP. Simulations of the
rates and energy distributions of these processes using
GEANT4 [24] lead us to expect < 0.13 false candidate
events (90% confidence level) in the Si detectors from
neutrons for this exposure with all e�ciencies included.

A greater source of background is the misidentifica-
tion of surface electron recoils, which may su↵er from re-
duced ionization yield and thus contribute events to the

−4 −2 0 2 4 6 8−10

−5

0

5

10

15

20

25

N
or

m
al

iz
ed

 Y
ie

ld

Normalized Timing

FIG. 3. Normalized ionization yield (standard deviations
from the nuclear recoil band centroid) versus normalized
phonon timing parameter (normalized such that the median
of the surface event calibration sample is at -1 and the cut
position is at 0) for events in all detectors from the WIMP-
search data set passing all other selection criteria. The black
box indicates the WIMP candidate selection region. The data
are colored to indicate recoil energy ranges (dark to light) of
7–20, 20–30, and 30–100 keV. The thin red curves on the bot-
tom and right axes are the histograms of the data, while the
thicker green curves are the histograms of nuclear recoils from
252Cf calibration data; both are normalized to have the same
arbitrary peak value.

WIMP-candidate region; these events are termed “leak-
age events”. Prior to looking at the WIMP-candidate
region (unblinding), the expected leakage was estimated
using the rate of single scatter events with yields consis-
tent with nuclear recoils from a previously unblinded Si
dataset [25] and the rejection performance of the timing
cut measured on low-yield multiple-scatter events from
133Ba calibration data. Two detectors used in this anal-
ysis were located at the end of detector stacks, so scatters
on their outer faces could not be tagged as multiple scat-
ters. The rate of surface events on the outer faces of these
two detectors were estimated using their single-scatter
rates from a previously unblinded dataset presented in
[25] and the multiples-singles ratio on the interior de-
tectors. The final pre-unblinding estimate for misidenti-
fied surface electron-recoil event leakage into the signal
band in the eight Si detectors was 0.47+0.28

�0.17(stat.) events.
This initial leakage estimate informed the decision to un-
blind. After unblinding, we developed a Bayesian es-
timate of the rate of misidentified surface events based
upon the performance of the phonon timing cut mea-
sured using events near the WIMP-search signal region
[21, 25]. Multiple-scatter events below the electron-recoil
ionization-yield region from both 133Ba calibration and
the WIMP-search data were used as inputs to this model.
Because the WIMP-search sample is sparser compared
to the calibration data, the combined estimates are more
heavily weighted towards the calibration data leakage es-
timates. Additionally the leakage estimate is corrected

CDMS-Si
3

FIG. 3: Low-energy spectrum after all cuts, prior to efficiency
corrections. Arrows indicate expected energies for all viable
cosmogenic peaks (see text). Inset: Expanded threshold re-
gion, showing the 65Zn and 68Ge L-shell EC peaks. Over-
lapped on the spectrum are the sigmoids for triggering ef-
ficiency (dotted), trigger + microphonic PSD cuts (dashed)
and trigger + PSD + rise time cuts (solid), obtained via high-
statistics electronic pulser calibrations. Also shown are ref-
erence signals (exponentials) from 7 GeV/c2 and 10 GeV/c2

WIMPs with spin-independent coupling σSI = 10−4pb.

Fig. 3 displays Soudan spectra following the rise time
cut, which generates a factor 2-3 reduction in background
(Fig. 2). Modest PSD cuts applied against microphonics
are as described in [1]. This residual spectrum is domi-
nated by events in the bulk of the crystal, like those from
neutron scattering, cosmogenic activation, or dark mat-
ter particle interactions. Several cosmogenic peaks are
noticed, many for the first time. All cosmogenic prod-
ucts capable of producing a monochromatic signature are
indicated. Observable activities are incipient for all.

We employ methods identical to those in [1] to ob-
tain Weakly Interacting Massive Particle (WIMP) and
Axion-Like Particle (ALP) dark matter limits from these
spectra. The energy region employed to extract WIMP
limits is 0.4-3.2 keVee (from threshold to full range of
the highest-gain digitization channel). A correction is
applied to compensate for signal acceptance loss from
cumulative data cuts (solid sigmoid in Fig. 3, inset).
In addition to a calculated response function for each
WIMP mass [1], we adopt a free exponential plus a
constant as a background model to fit the data, with
two Gaussians to account for 65Zn and 68Ge L-shell
EC. The energy resolution is as in [1], with parameters
σn=69.4 eV and F=0.29. The assumption of an irre-
ducible monotonically-decreasing background is justified,
given the mentioned possibility of a minor contamination
from residual surface events and the rising concentration

FIG. 4: Top panel: 90% C.L. WIMP exclusion limits from
CoGeNT overlaid on Fig. 1 from [6]: green shaded patches
denote the phase space favoring the DAMA/LIBRA annual
modulation (the dashed contour includes ion channeling).
Their exact position has been subject to revisions [7]. The
violet band is the region supporting the two CDMS candi-
date events. The scatter plot and the blue hatched region
represent the supersymmetric models in [8] and their uncer-
tainties, respectively. Models including WIMPs with mχ ∼7-
11 GeV/cm2 provide a good fit to CoGeNT data (red contour,
see text). The relevance of XENON10 constraints in this low-
mass region has been questioned [14]. Bottom panel: Limits
on axio-electric coupling gaēe for pseudoscalars of mass ma

composing a dark isothermal galactic halo (see text).

towards threshold that rejected events exhibit. A sec-
ond source of possibly unaccounted for low-energy back-
ground are the L-shell EC activities from observed cos-
mogenics lighter than 65Zn. These are expected to con-
tribute < 15% of the counting rate in the 0.5-0.9 keVee
region (their L-shell/K-shell EC ratio is ∼ 1/8 [5]). A
third possibility, quantitatively discussed below, consists
of recoils from unvetoed muon-induced neutrons.

Fig. 4 (top) displays the extracted sensitivity in spin-
independent coupling (σSI) vs. WIMP mass (mχ). For
mχ in the range ∼7-11 GeV/c2 the WIMP contribu-
tion to the model acquires a finite value with a 90%
confidence interval incompatible with zero. The bound-
aries of this interval define the red contour in Fig. 4.
However, the null hypothesis (no WIMP component in
the model) fits the data with a similar reduced chi-
square χ2/dof =20.4/20 (for example, the best fit for
mχ = 9 GeV/c2 provides χ2/dof =20.1/18 at σSI =
6.7 × 10−41cm2). It has been recently emphasized [6]
that light WIMP models [1, 8, 9] provide a common ex-

CoGeNT
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Figure 8: Time variation for data centered on the Ge68 L-shell peak for two di⇥erent energy ranges.
The top panel shows the predicted cosmogenic contribution using Eq. A.1 and the parameters given
in Appendix A (black diamonds), as well as the (e⇧ciency corrected) time-binned distribution of the
data (red open circles). A constant of 1.4 counts/day/keVee (see unmodulated spectrum in Fig. 6)
has been added to the background. The bottom panel shows the residuals between the data and the
model (red). The dashed blue line is the best-fit modulation in the range 0.9–1.5 keVee, obtained
using the log-likelihood approach as in Fig. 6.

Boltzmann with velocity dispersion v0 = 220 km/s and escape velocity vesc = 550 km/s:

f(v) ⇥ (e�v2/v20 � e�v2esc/v
2
0 )�(vesc � v) , (4.1)

where v is the velocity in the galactic rest frame. More general velocity profiles will be

considered in the following subsections.

We carry out fits using an unbinned extended maximum likelihood approach and a binned

�2 analysis. For the unbinned method, we define a likelihood function that includes the

dark matter signal, the cosmogenic backgrounds, and a constant background with floating

normalization. The likelihood function accounts for e⇧ciencies and shutdown periods. For

the binned approach, the data is divided into five energy bins of equal size, spanning the range

from 0.5–3.0 keVee. Within each energy bin, the events are partitioned in fifteen equal-sized

time bins, each approximately one month wide. We subtract cosmogenic backgrounds and

correct for the shutdown periods of the detector (the e⇧ciencies are accounted for in the
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Figure 8: Time variation for data centered on the Ge68 L-shell peak for two di⇥erent energy ranges.
The top panel shows the predicted cosmogenic contribution using Eq. A.1 and the parameters given
in Appendix A (black diamonds), as well as the (e⇧ciency corrected) time-binned distribution of the
data (red open circles). A constant of 1.4 counts/day/keVee (see unmodulated spectrum in Fig. 6)
has been added to the background. The bottom panel shows the residuals between the data and the
model (red). The dashed blue line is the best-fit modulation in the range 0.9–1.5 keVee, obtained
using the log-likelihood approach as in Fig. 6.
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where v is the velocity in the galactic rest frame. More general velocity profiles will be

considered in the following subsections.

We carry out fits using an unbinned extended maximum likelihood approach and a binned

�2 analysis. For the unbinned method, we define a likelihood function that includes the

dark matter signal, the cosmogenic backgrounds, and a constant background with floating

normalization. The likelihood function accounts for e⇧ciencies and shutdown periods. For

the binned approach, the data is divided into five energy bins of equal size, spanning the range

from 0.5–3.0 keVee. Within each energy bin, the events are partitioned in fifteen equal-sized
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Nuclear radius rN ⇠ A1/3fm
J.D. Lewin, PR StnithIAstroparticle Physics 6 (1996) 87-112 99 

Fig. 6. Form factor versus q for Na. - Fermi density, data from 1181. ...‘..... Helm density: rR from (4.10), (4.11); s = 0.9 
fm. - - - - - Helm density, Engel [ 151 fit: rms = 0.93A’k s = I .O fm. 

Fig. 7. Form factor versus q for I. Figure legend: same as Fig. 6. 
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ER kev ER k+J 

Fig. 8. Form factor versus ER for Na. - Fermi density, data from [ 181. - - - - - Helm density: r, = 1.14A1i3; s = 0.9 fm. 

Fig. 9. Form factor versus ER for I. Figure legend: same. as Fig. 8. 

Such calculations, where available, should be used to set limits on specific WIMPS. 

[Lewin and Smith]

SI:Helm, or Fermi distribution

S(q) = a20S00(q) + a0a1S01(q) + a21S11(q)
SD:

Converting nuclear to 
nucleon x-sec

For the case of inelastic ⌃N ⇤ ⌃⇥N scattering it is given by
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2mNEd
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mNEd

µ⇥N
+ �

⌅
, (2)

where µ⇥N = m⇥mN/(m⇥ +mN) is the reduced mass of the nucleus–DM system, with mN

and M⇥ the nucleus and DM masses respectively, while � is the mass di�erence between ⌃⇥

and ⌃. The same equation also applies to elastic ⌃N ⇤ ⌃N scattering, with � = 0. As
observed in ref. [18] for appropriately chosen � one can suppress the signal in experiments
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energy signal, changing the shape of the expected event rate from an exponentially falling
function of the recoil energy to a bump-like signal at higher energies. This, in addition,
improves the fit to the DAMA modulated signal energy spectrum.

The di�erential cross section for scattering on a target nucleus is (per assumption) given
by the spin independent (SI) and spin dependent (SD) contributions, which are convention-
ally written as (see e.g. [37])
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dEd
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2µ2
⇥Nv

2

�
⇧SIF 2(Ed) + ⇧SDS(Ed)

⇥
, (3)

where ⇧SI,SD are the integrated SI and SD cross sections for DM scattering on nucleus,
but with form factors factored out. For the SI form factor F (Ed) we use [38] F (Ed) =
3e��2s2/2[sin(⇥r) � ⇥r cos(⇥r)]/(⇥r)3, with s = 1 fm, r =

⇧
R2 � 5s2, R = 1.2A1/3 fm,

⇥ =
⇧
2mNEd (and q2 ⌅ �⇥2). The SD form factor S(Ed) is computed according to ref. [39]

for 133Cs (abundant in the CsI crystals used by the KIMS experiment) and according to
ref. [40] for all other nuclei.

Even though the form factors were factored out of the definitions of ⇧SI,SD, these quan-
tities still depend on nuclear structure through isospin content (the number of protons vs.
neutrons). The SI cross section is thus

⇧SI =
[Zfp + (A� Z)fn]2

f 2
p

µ2
⇥N

µ2
⇥p

⇧SI
p , (4)

with A the atomic mass number, Z the charge of the nucleus, fp,n the SI DM couplings to
proton and neutron respectivelly, µ⇥p the reduced DM–proton mass, and ⇧SI

p the SI cross
section for scattering of DM on a proton. In the fits we will assume fp = fn for definiteness
and quote results in terms of ⇧SI

p . Since the ratio A/Z is similar for di�erent nuclei this
choice mostly a�ects only the overall value of ⇧SI

p , while it does not a�ect the relative sizes
of contributions from di�erent experiments. It is easy to rescale our results for di�erent
values of fp and fn through ⇧SI

p ⇤ ⇧SI
p /(Z/A+ (1� Z/A)fn/fp)2.

The SD cross section depends in addition on the spin J of the nucleus

⇧SDS(Ed) =
4µ2

⇥N⌅

3µ2
⇥pa

2
p(2J + 1)

[a20S00(q) + a0a1S01(q) + a21S11(q)]⇧
SD
p , (5)
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Some “standard candles”
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0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV
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FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].
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region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
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The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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Annual Modulation
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0
)3/2

e−v2/v2
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In galactic frame:

per unit detector mass at a DM direct detection experiment is given by [22]

dR

dER
=

NT mN ρχ

2µ2
Nχ mχ

∫

vmin

d3"v
f("v,"vE)

v
σN F 2(ER) , (2.1)

where mN ≈ AmP is the nucleus mass with mP the proton mass and A the atomic number;

F (ER) is the nuclear form factor and accounts for the fact that the cross section drops as

one moves away from zero momentum transfer; the two-parameter Fermi charge distribution

is used to calculate F (ER) throughout this paper [23]; NT is the number of target nuclei per

unit mass, given by NT = NA/A with Avogadro’s number, NA = 6.02 × 1026 kg−1; σN is the

cross section to scatter of a nucleus, and µNχ is the reduced mass of the DM-nucleus system.

The DM mass is mχ and we take the local DM density to be ρχ = 0.3 GeV/cm3. The velocity

of the dark matter onto the (Earth-borne) target is "v. The Earth’s velocity in the galactic

frame, "vE , is the sum of the Earth’s motion around the Sun [22] and the Sun’s motion in the

galaxy [24]. We assume the WIMP velocity distribution is Maxwell-Boltzmann with velocity

dispersion v0 = 220 km/s. Thus,

f("v,"vE) =
1

(π v2
0)

3/2
e−("v+"vE)2/v2

0 . (2.2)

As a function of time in the galactic frame, the Earth’s velocity is vE ≈ 227+14.4 cos [2π
(

t−t0
T

)

]

km/s, with T = 1 year and t0 is around June 2nd. The DM velocity distribution is cut-off

at the galactic escape velocity. Thus, the upper limit of the integration in (2.1) is given by

|"v + "vE| ≤ vesc, and the lower limit, since we will consider elastic scatters, is given by

vmin =

√

mNER

2µ2
Nχ

. (2.3)

The current allowed range for the galactic escape velocity [25] is 498 km/s ≤ vesc ≤ 608

km/s. For concreteness we set vesc = 500 km/s. Increasing this value slightly increases our

allowed parameter space, but the general features remain unchanged. Because of different

energy detection efficiencies for different detectors, a quench factor fq is introduced to relate

the observed recoil energy, ĒR, to the actual recoil energy ER, ER = ĒR/fq. This allows one

to convert Eq. (2.1) to the experimental differential spectrums as dR/dĒR = 1/fq dR/dER.

For example, we take the quench factor fq = 0.085 for the iodine element in the DAMA

experiment.

In the usual calculation the nuclear cross section σN is related to the nucleon scattering

cross section, σp, by,

σN =
(Zfp + (A − Z)fn)2

f2
p

µ2
Nχ

µ2
nχ

σp , (2.4)

where fp,n are the coupling strengths of DM to protons and neutrons and µnχ is the DM-

nucleon reduced mass. Here however, we wish to work explicitly with the nuclear scattering

cross section, and leave relating it to the microscopic Lagrangian to later, section 3. In

– 3 –
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to convert Eq. (2.1) to the experimental differential spectrums as dR/dĒR = 1/fq dR/dER.
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is used to calculate F (ER) throughout this paper [23]; NT is the number of target nuclei per

unit mass, given by NT = NA/A with Avogadro’s number, NA = 6.02 × 1026 kg−1; σN is the
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km/s. For concreteness we set vesc = 500 km/s. Increasing this value slightly increases our

allowed parameter space, but the general features remain unchanged. Because of different
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Figure 2: Model-independent residual rate of the single-hit scintillation events, mea-
sured by the new DAMA/LIBRA experiment in the (2 – 4), (2 – 5) and (2 – 6) keV
energy intervals as a function of the time. The residuals measured by DAMA/NaI and
already published in ref. [4, 5] are also shown. The zero of the time scale is January
1st of the first year of data taking of the former DAMA/NaI experiment. The exper-
imental points present the errors as vertical bars and the associated time bin width
as horizontal bars. The superimposed curves represent the cosinusoidal functions be-
haviours A cosω(t − t0) with a period T = 2π

ω = 1 yr, with a phase t0 = 152.5 day
(June 2nd) and with modulation amplitudes, A, equal to the central values obtained by
best fit over the whole data, that is: (0.0215± 0.0026) cpd/kg/keV, (0.0176± 0.0020)
cpd/kg/keV and (0.0129±0.0016) cpd/kg/keV for the (2 – 4) keV, for the (2 – 5) keV
and for the (2 – 6) keV energy intervals, respectively. See text. The dashed vertical
lines correspond to the maximum of the signal (June 2nd), while the dotted vertical
lines correspond to the minimum. The total exposure is 0.82 ton×yr.
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energy detection efficiencies for different detectors, a quench factor fq is introduced to relate

the observed recoil energy, ĒR, to the actual recoil energy ER, ER = ĒR/fq. This allows one
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Figure 2: Model-independent residual rate of the single-hit scintillation events, mea-
sured by the new DAMA/LIBRA experiment in the (2 – 4), (2 – 5) and (2 – 6) keV
energy intervals as a function of the time. The residuals measured by DAMA/NaI and
already published in ref. [4, 5] are also shown. The zero of the time scale is January
1st of the first year of data taking of the former DAMA/NaI experiment. The exper-
imental points present the errors as vertical bars and the associated time bin width
as horizontal bars. The superimposed curves represent the cosinusoidal functions be-
haviours A cosω(t − t0) with a period T = 2π

ω = 1 yr, with a phase t0 = 152.5 day
(June 2nd) and with modulation amplitudes, A, equal to the central values obtained by
best fit over the whole data, that is: (0.0215± 0.0026) cpd/kg/keV, (0.0176± 0.0020)
cpd/kg/keV and (0.0129±0.0016) cpd/kg/keV for the (2 – 4) keV, for the (2 – 5) keV
and for the (2 – 6) keV energy intervals, respectively. See text. The dashed vertical
lines correspond to the maximum of the signal (June 2nd), while the dotted vertical
lines correspond to the minimum. The total exposure is 0.82 ton×yr.

8

t0 = June 2
nd

8.2σ!

S = S0 + Sm cos [2π(t − t0)/T ]
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Does annual modulation = discovery of DM? 

Many things modulate on a year timescale:
•temperature
•water loading
•radon abundance
•ice-cream sales....

But, very few line up year-on-year with June 2nd
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DM models pre-DAMA

DAMA direct detection 
experimentalist?
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Possible explanations

•Low mass dark matter with channelling, M~10 GeV
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•Exothermic DM (exoDM)
•Resonant Dark Matter (rDM)
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DM: a phenomenologist’s playground

Explore the landscape of possible ways DM can interact 
with the SM

Experiments originally designed for a ~100 GeV SUSY 
WIMP, but there are many more possibilities

Thankfully many experiments and clever 
experimentalists
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Light Dark Matter

Motivated by fact that ΩDM ∼ 5 Ωb

If baryon and DM abundance related then expect DM to 
be (5-10) x proton mass
Also, hard for direct detection because of thresholds, 
backgrounds, etc    (ask Jodi ☺)
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Inelastic Dark Matter (iDM) [Weiner and Tucker-Smith]

dR

dER

=
NT mN ρχ

2 µ2
Nχ mχ

∫ vmax

vmin

d3"v
f("v,"vE)

v
σN F 2(ER)

vmin =

√

1

2mNER

(

mNER

µNχ

+ δ

)SM

χ

SM

χ

χ χ
′

mχ − mχ′ = δ ∼ 100 keV

•Requires “large” momentum exchange to upscatter
•Favours high velocity tail of MB distribution
•Increased modulation
•Prefers heavy targets e.g. iodine, xenon, tungsten,..
•Recoil spectrum has a peak

All of the above helped to make DAMA consistent with 
CDMS, predicts events at other heavy element detectors
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Exothermic DM (exoDM)

I. INTRODUCTION

The recent observation by CDMS-Si is potentially a BFD. In order to determine whether

to get excited we compare the observation at CDMS to various constraints, as well as

to other potential signal. We do so under the assumption of elastically scattering DM,

isospin-dependent dark matter, and exothermic DM. We will compare the experimental

results in an astrophysics independent fashion. In addition we consider several experimental

uncertainties, and emphasise that in many cases existing, but unpublished, information

about the scattering rate below current thresholds may hold the key to determining the

validity of a DM interpretation.

II. DM AND ASTROPHYSICS MODELS

For DM scattering o↵ nuclei the di↵erential rate is given by,

dR

dER
=

NT⇢�
m�

Z vesc

vmin

d3~vf(~v(t))
d�|~v|
dER

, (1)

where NT denotes the number of scattering targets and ⇢� is the local DM density (typically

taken to be 0.3 GeV/cm3). We will focus our attentions on spin-independent couplings[32],

the most abundant isotope of silicon carries no spin, for which the nuclear di↵erential scat-

tering cross section is related to the neutron cross section by,

d�

dER
= F 2

N(ER)
mN

2µ2
n�v

2

(Zfp + (A� Z)fn)2

f 2
n

�n . (2)

The nuclear form factor, FN , takes into account the fact that at non-zero momentum ex-

change the interaction can resolve the nuclear structure.

In the general case where the scattering of the DM involves a transition of the DM to

another dark-sector particle, DM0, whose mass di↵ers by � the relationship between the

minimum incoming speed necessary and recoil energy, ER, is given by,

vmin =
1p

2mNER

����
mNER

µN�
+ �

���� . (3)

We now briefly describe the experiments we are interested in.

2

[Graham, Harnik, Rajendran, Saraswat]

SM

χ

SM

χ

χ χ
′

m� �m�0 = � ⇠ �10 keV

•Can deposit energy even at zero speed
•Decreased (but still some) modulation
•Prefers light targets 
•Recoil spectrum has a peak
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Form Factor DM [Chang, Weiner, Pierce and Feldstein, Fitzpatrick, Katz]

KIMS

CDMS
CRESST

XENON
ZEPLIN2

ZEPLIN3

DAMA

0 50 100 150
q!MeV"

Figure 1: Overlap in q of the DAMA signal with several null experiments. The height of the
null experiments has no particular meaning.

to flatten the spectrum of events observed at DAMA compared to the steep rise at low re-
coil energies predicted by a standard light elastically scattering WIMP. Both of the above

purposes may be served simultaneously by a form factor which falls off appropriately at low

momentum transfers.

Now, a key point is that the events seen by DAMA between qi and qf essentially lead to a
direct prediction (up to modulation fraction) for the events to be seen at other experiments

within that same range of momentum transfers. These predictions are more or less indepen-
dent of the choice of form factor, and it is therefore not immediately obvious whether they
alone are enough to rule out form factor dark matter as an explanation for DAMA. The most

basic question we must answer is thus the following: does there exist any function F (q) for
the form factor - which we may take to be zero outside of the range qi < q < qf - which allows

for the DAMA modulating signal, but which does not overpredict the number of events to be
seen between qi and qf at other experiments?

Later we will consider explicit models that give rise to form factors, but for the moment
we would like to answer this question while being as agnostic as possible about the model-
building aspects. Thus we will begin by working with a physically unmotivated form factor,

chosen solely with the goal of fitting the DAMA observed spectrum while simultaneously
being consistent with the null experiments. To achieve this, we will construct a form factor

to explicitly put the signal just below the 1σ error bar at DAMA, bin-by-bin1. Furthermore,
outside the range of the DAMA signal (i.e. below q = 80 MeV), we set the form factor
to zero. An example is shown in Fig. 3. To evaluate the consistency of this form factor

with experiment, we calculate the probability of the low number of potential signal events
at CDMS and CRESST-II using the pmax method [5, 20], which is based on the number of

1More precisely, we construct the signal to be 80% of the signal-minus-1σ rate.

5

[arXiv:0908.2991]

DM has a form factor, dipole coupling to light gauge boson

SM

χ

SM

χ

1

Λ2
Dµφ†DνφFµν

•Form factors suppress certain ranges of recoil energy
•Works best with SD couplings, or non-standard velocity 
distributions e.g. via Lactea
•Although suppresses events at other detectors still 
expect some signal
•Peak in spectrum at non-zero recoil energy

dR

dER

=
NT mN ρχ

2 µ2
Nχ mχ

∫ vmax

vmin

d3"v
f("v,"vE)

v
σN F 2(ER)
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A moment with the photon [Pospelov and ter Veldhuis]

Although DM is electrically neutral it can have higher 
electromagnetic moments e.g. EDM, MDM, 
quadropoles, anapole, charge radius,...

DM couples to nucleus through photon exchange

Leads to interesting momentum dependence e.g.

SM

χ

SM

χ

γ

We relate q2 to the nuclear recoil energy in the lab frame, q2 = 2mAER, and find

dσEDM

dER
=

1

4π
d2χZ

2e2
(S + 1)

3S

1

v2r

1

ER
|GE(q

2)|2 . (2)

The 1/(v2rER) dependence is characteristic of the EDM of the DM particle.3

To have an EDM, the DM particle cannot be self-conjugate. Consequently, for S = 1
2 , the

particle has to be Dirac. Note that the spin factor S+1
3S becomes 1 for S = 1

2 in our numerical

illustrations. Our result also applies to the anti-dark matter particle under the assumption that

CPT is conserved.

core (i.e., with atomic masses above 20) is obtained by the Fourier transform in the limit c ! a0,

GE(q) =

[

πa0

c
sin(qc) cosh(πa0q)

sinh2(πa0q)
− cos(qc)

sinh(πa0q)

]

4π2ρa0c
q

, ρ0 =
3

4πc3
1

1 + (a0π/c)2
.

Note that GE(0) = 1.
3The differential reaction rate (per unit detector mass) is

dR
dER

=
ρ0
mχ

1
mA

∫

∞

vmin

vrf1(vr)
dσ
dER

dvr ,

where the local DM density ρ0 = 0.3 GeV/cm3 and vmin =
√

mAER
2m2

r
. dR/dER includes contributions from both χ

and its conjugate χ̄ for they have the same cross sections.

In the non-relativistic limit, the differential cross section can be Maclaurin expanded in powers of vr. The two

most important contributions are

dσ ∼ 1
v2r

d{σ−}+ d{σ+} ,

with vr independent coefficients denoted by brackets. (For example, in Eq. 1, d{σ−} is the coefficient of v−2
r , and

d{σ+} = 0.) Usually, the first term is the relevant one (as in the EDM, CFF, or SI cases). However, in certain

cases like MDM, the second term may compete due to the 1/ER enhancement from the low energy virtual photon

propagator. On integrating, we find

dR
dER

=
ρ0
mχ

1
mA

[

d{σ−}
dER

1
v0

I− +
d{σ+}
dER

v0I+

]

,

where the dimensioless integrals are defined by

I−
N

=
v0
2vE

[

erf

(

vu
v0

)

− erf

(

vd
v0

)

− 2√
π

(

vu
v0

− vd
v0

)

e−v2
esc

/v2
0

]

,

and
I+
N

=

(

vd
2vE

√
π
+

1√
π

)

e−v2
d/v

2
0 −

(

vu
2vE

√
π
− 1√

π

)

e−v2
u/v2

0

+
v0
4vE

(

1 +
2v2E
v20

)(

erf

(

vu
v0

)

− erf

(

vd
v0

))

− 1√
π

[

2 +
1

3vEv20

(

(vmin + vesc − vd)
3 − (vmin + vesc − vu)

3)
]

e−v2
esc

/v2
0 ,

with the shorthand vu = min(vmin + vE , vesc), vd = min(vmin − vE , vesc). Note that I− = 0 for vmin > vesc + vE .

4
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Isospin dependent DM [Kurylov and Kamionkowski; Feng and Kumar]

Typically assume fn~fp
But different elements have different ratios of p/n
Can remove some of the strongest constraints if

fn
fp

⇡ �0.7
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Isospin dependent DM [Kurylov and Kamionkowski; Feng and Kumar]

For the case of inelastic �N ! �0N scattering it is given by

v
min

=
1p

2mNEd

✓
mNEd

µ�N
+ �

◆
, (2)

where µ�N = m�mN/(m� +mN) is the reduced mass of the nucleus–DM system, with mN

and M� the nucleus and DM masses respectively, while � is the mass di↵erence between �0

and �. The same equation also applies to elastic �N ! �N scattering, with � = 0. As
observed in ref. [18] for appropriately chosen � one can suppress the signal in experiments
where DM scatters on lighter nuclei, while not significantly a↵ecting the rate in DAMA
(see also [35, 36]). Namely for � � mNEd/µ�N the minimal velocity v

min

falls with mN .
If the signal is coming from the tails of the velocity distributions, the di↵erence between
lighter and heavier nuclei, such as germanium vs. iodine, can be significant (for v

min

> v
esc

the scattering is completely absent). Furthermore, the inelasticity also suppresses the low
energy signal, changing the shape of the expected event rate from an exponentially falling
function of the recoil energy to a bump-like signal at higher energies. This, in addition,
improves the fit to the DAMA modulated signal energy spectrum.

The di↵erential cross section for scattering on a target nucleus is (per assumption) given
by the spin independent (SI) and spin dependent (SD) contributions, which are convention-
ally written as (see e.g. [37])

d�

dEd
=

mN

2µ2

�Nv
2

�
�SIF 2(Ed) + �SDS(Ed)

�
, (3)

where �SI,SD are the integrated SI and SD cross sections for DM scattering on nucleus,
but with form factors factored out. For the SI form factor F (Ed) we use [38] F (Ed) =
3e�2s2/2[sin(r) � r cos(r)]/(r)3, with s = 1 fm, r =

p
R2 � 5s2, R = 1.2A1/3 fm,

 =
p
2mNEd (and q2 ' �2). The SD form factor S(Ed) is computed according to ref. [39]

for 133Cs (abundant in the CsI crystals used by the KIMS experiment) and according to
ref. [40] for all other nuclei.

Even though the form factors were factored out of the definitions of �SI,SD, these quan-
tities still depend on nuclear structure through isospin content (the number of protons vs.
neutrons). The SI cross section is thus

�SI =
[Zfp + (A� Z)fn]2

f 2

p

µ2

�N

µ2

�p

�SI

p , (4)

with A the atomic mass number, Z the charge of the nucleus, fp,n the SI DM couplings to
proton and neutron respectivelly, µ�p the reduced DM–proton mass, and �SI

p the SI cross
section for scattering of DM on a proton. In the fits we will assume fp = fn for definiteness
and quote results in terms of �SI

p . Since the ratio A/Z is similar for di↵erent nuclei this
choice mostly a↵ects only the overall value of �SI

p , while it does not a↵ect the relative sizes
of contributions from di↵erent experiments. It is easy to rescale our results for di↵erent
values of fp and fn through �SI

p ! �SI
p /(Z/A+ (1� Z/A)fn/fp)2.

The SD cross section depends in addition on the spin J of the nucleus

�SDS(Ed) =
4µ2

�N⇡

3µ2

�pa
2

p(2J + 1)
[a2

0

S
00

(q) + a
0

a
1

S
01

(q) + a2
1

S
11

(q)]�SD

p , (5)

4

Typically assume fn~fp
But different elements have different ratios of p/n
Can remove some of the strongest constraints if

fn
fp

⇡ �0.7
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Resonant Dark Matter (rDM) [Bai and PJF]

•Cross section is velocity dependent
•In particular the velocity dependence is “resonant”
•Picks out small range of velocities
•Increases modulation 
•In our particular model realisation scattering is highly 
element dependent 

dR

dER

=
NT mN ρχ

2 µ2
Nχ mχ

∫ vmax

vmin

d3"v
f("v,"vE)

v
σN F 2(ER)

Νr " 450 km ! s

∆ " 150 km ! s
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Figure 1: DM velocity distribution after angular integration in the summer (red) and winter (blue)
for the usual Maxwell-Boltzmann distribution (dashed) and for the case with a resonance (solid) at
450 km/s with width 150 km/s, the escape velocity was taken to be 500 km/s.

particular, in the usual approach σp is velocity, and element independent. We will see that

in rDM these statements are no longer true.

In rDM, the DM or its gauge partner, forms a short-lived bound state with the target

nucleus. The mass of the bound state is denoted as mr. In this case the DM-nucleus elastic

scattering cross section has a resonant structure. In the non-relativistic limit, one has s =

(mχ + mN )2 + mχmNv2. For
√

s close to the resonance mass, a familiar formula is obtained,

σN =
2Jr + 1

(2sχ + 1)(2sN + 1)

π

k2

Γ2
r→χN

(E − mr)2 + Γ2
tot/4

, (2.5)

where E =
√

s is the center of mass energy; sχ and sN are the spins of the dark matter

and the target nucleus; Jr is the total angular momentum of the resonant bound state. In

the non-relativistic limit, the scattering process is dominated by the s-wave, so a selection

rule,
−→
Jr = −→sχ + −→sN , applies to the accessible bound state. Γr→χN is the partial width of

the boundstate decaying into χ plus N and is a function of the centre of mass energy. The

total width Γtot may be larger than this width due to the existence of other decay modes,

we will discuss this in more detail in Section 3. The momentum of the DM in the center of

momentum frame is k = µNχ v. Note that if there exists more than one resonance, the cross

section is the sum over all resonances, each given by (2.5). Since the DM is non-relativistic,

we can rewrite the cross section as a resonance in velocity,

σN = σ0
v2
r

v2

δ2/π

(v2 − v2
r )2 + δ4

. (2.6)

– 4 –
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in rDM these statements are no longer true.

In rDM, the DM or its gauge partner, forms a short-lived bound state with the target

nucleus. The mass of the bound state is denoted as mr. In this case the DM-nucleus elastic

scattering cross section has a resonant structure. In the non-relativistic limit, one has s =

(mχ + mN )2 + mχmNv2. For
√

s close to the resonance mass, a familiar formula is obtained,

σN =
2Jr + 1

(2sχ + 1)(2sN + 1)

π

k2

Γ2
r→χN

(E − mr)2 + Γ2
tot/4

, (2.5)

where E =
√

s is the center of mass energy; sχ and sN are the spins of the dark matter

and the target nucleus; Jr is the total angular momentum of the resonant bound state. In

the non-relativistic limit, the scattering process is dominated by the s-wave, so a selection

rule,
−→
Jr = −→sχ + −→sN , applies to the accessible bound state. Γr→χN is the partial width of

the boundstate decaying into χ plus N and is a function of the centre of mass energy. The

total width Γtot may be larger than this width due to the existence of other decay modes,

we will discuss this in more detail in Section 3. The momentum of the DM in the center of

momentum frame is k = µNχ v. Note that if there exists more than one resonance, the cross

section is the sum over all resonances, each given by (2.5). Since the DM is non-relativistic,

we can rewrite the cross section as a resonance in velocity,

σN = σ0
v2
r

v2

δ2/π

(v2 − v2
r )2 + δ4

. (2.6)

– 4 –
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XENON100: New Spin-Independent Results

Upper Limit (90% C.L.) is 2 x 10-45 cm2  for 55 GeV/c2 WIMP

Wednesday, July 18, 2012

How to compare experiments?
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Figure 12: Left : Neutrino iso-event contour lines (long dash orange) compared with current limits and regions of interest. The
contours delineate regions in the WIMP-nulceon cross-section vs. WIMP mass plane which for which dark matter experiments
will see neutrino events (see Section IIID). Right : WIMP discovery limit (thick dashed orange) compared with current limits
and regions of interest. The dominant neutrino components for different WIMP mass regions are labeled. Progress beyond
this line would require a combination of better knowledge of the neutrino background, annual modulation, and/or directional
detection. We show 90% confidence exclusion limits from SIMPLE [55] (purple), COUPP [56] (teal), ZEPLIN-III [57] (blue),
EDELWEISS standard [58] and low-threshold [59] (orange), CDMS II Ge standard [60] and low-threshold [61] (red), XENON10
S2-only [62] (light green), and XENON100 [1] (dark green). The filled regions identify possible signal regions associated with
data from CDMS-II Si [2] (light blue, 90% C.L.), CoGeNT [64] (yellow, 90% C.L.), DAMA/LIBRA [65] (tan, 99.7% C.L.), and
CRESST [66] (pink, 95.45% C.L.) experiments. The light green shaded region is the parameter space excluded by the XENON
collaboration.

and supernovae. We have specifically focused on experi-
ments that are only sensitive to energy deposition from
WIMPs. We have determined the minimum detectable
spin-independent cross section as a function of WIMP
mass over wide range of masses from 500 MeV/c2 to
10 TeV/c2 that could lead to a significant dark matter
detection. WIMP-nucleon cross sections of ∼10−45 cm2

and ∼10−49 cm2 are the maximal sensitivity to light and
heavy WIMP dark matter respectively that direct detec-
tion searches without directional sensitivity could reach,
given the uncertainties on the neutrino fluxes. This li-
mit is roughly about three to four orders of magnitude
below the most recent experimental constraints. In the
case of light WIMPs (about 6 GeV/c2) next generation
experiments might already reach the saturation regime
with about 100 neutrino background events. For heavier
WIMPs (above 20 GeV/c2) we have shown that progress
below 10−48 cm2 will be strongly limited by the very
large increases in exposure required for decreasing gains
in discovery reach.
As a main conclusion of this work, our results show

that the neutrino background poses a hard limit on
the discovery potential of future direct detection expe-
riments. However, it is possible to reduce the impact of
neutrino backgrounds on direct searches experiments in
four ways :

1. An improvement in the theoretical estimation and
experimental determination of the neutrino fluxes.

In particular more precise measurements of the dif-
ferent neutrino flux components by future experi-
ments will improve the ultimate discovery limit of
dark matter experiments.

2. A utilization of different target nuclei. As we have
shown in Figure 8, even though utilizing different
target nuclei generally does not improve sensitivity
as much as an increase in exposure does, it will
be important for independent measurements of the
neutrino fluxes and the coherent scattering cross
section. This is consistent with several recent ana-
lyses [48, 49]. However, it is certainly likely that if
the WIMP couples differently to the proton and
neutron, as in the case of isospin-violating dark
matter dark matter, the utilization of different tar-
get nuclei will be even more important.

3. Measurement of annual modulation. In the case of
a 6 GeV/c2 WIMP, next generation experiments
could reach sufficiently high statistics to disen-
tangle the WIMP and the neutrino contributions
using the 6% annual modulation rate of dark mat-
ter interactions [54]. However, in the case of hea-
vier WIMPs, very large and unrealistic exposures
would be required to obtain enough events to detect
such predicted annual modulation for cross-sections
around 10−48 cm2. Furthermore, the atmospheric
neutrino event rate also undergoes annual modula-
tion due to the change in temperature of the atmos-

Billard, Figueroa-Feliciano, Strigari
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Winds, streams and flows

Figure 2: Velocity distribution functions: the left panels are in the host halo’s restframe, the
right panels in the restframe of the Earth on June 2nd, the peak of the Earth’s velocity relative
to Galactic DM halo. The solid red line is the distribution for all particles in a 1 kpc wide shell
centered at 8.5 kpc, the light and dark green shaded regions denote the 68% scatter around the
median and the minimum and maximum values over the 100 sample spheres, and the dotted line
represents the best-fitting Maxwell-Boltzmann distribution.

are independent of location and persistent in time and hence reflect the detailed assembly
history of the host halo, rather than individual streams or subhalos. The extrema of the
sub-sample distributions, however, exhibit numerous distinctive narrow spikes at certain
velocities, and these are due to just such discrete structures. Note that although only
a small fraction of sample spheres exhibits such spikes, they are clearly present in some
spheres in all three simulations. The Galilean transform into the Earth’s rest frame washes
out most of the broad bumps, but the spikes remain visible, especially in the high veloc-
ity tails, where they can profoundly a�ect the scattering rates for inelastic and light DM
models (see Section 4).
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Via Lactea IIVDF of Dark Matter from Simulations 3

Figure 2. The VDF for one representative dark matter halo
in Rhapsody (histogram), along with the best fits using Eq. (1)
with (v0/vesc, p) = (0.13, 0.78) (black, χ2 = 0.59), SHM (blue,
9.67), the double power-law model (cyan, 9.47), the Tsallis model
(green, 1.99), and the analytic VDFs from Eddington’s formula
with isotropic assumption (red dash, 8.48), Osipkov–Merritt (ma-
genta dash, 6.41), and constant β = 1/2 (yellow dash, 11.8). The
y-axis is in log scale in the main figure and linear in the inset.

as q → 1 (Vergados et al. 2008). It was argued that
the Tsallis model provides better fit to simulations with
baryons (Ling et al. 2010), although this conclusion may
be affected by the relatively low resolution of the simu-
lations.
In contrast, our empirical model, Eq. (1), is not based

on a Gaussian distribution but rather on an exponential
distribution. It also has a power-law cut-off in (binding)
energy. Fig. 2 shows the VDF in a simulated halo, along
with the best fit from Eq. (1) and the best fits from other
conventional models. All the best-fit parameters are ob-
tained from the maximum-likelihood estimation in the
range of (0, vesc). The fits using Eq. (1) are statistically
better than other models or the analytic VDFs, espe-
cially around the peak and the tail. We performed the
likelihood-ratio test and found that our model fits sig-
nificantly better for all Rhapsody halos than the SHM
or the double power-law model at all four radii shown in
Fig. 1.
In Fig. 2 we also compare three analytic VDFs. For

the isotropic model shown, the analytic VDF is given
by Eddington’s formula, which gives a one-to-one corre-
spondence between the density profile and the VDF. For
anisotropic systems, one must also model the anisotropy
parameter, defined as β = 1 − (σ2

θ + σ2
φ)/(2σ

2
r), where

σ2 is the variance in each velocity component. There
is currently no analytic VDF whose anisotropy profile
matches that measured in simulations, so we choose three
simple and representative anisotropic models: constant
anisotropy (with β = 0 and 1/2) and the Osipkov–
Merritt model (Osipkov 1979; Merritt 1985). The phase-
space distributions of these models can be determined
numerically (Binney & Tremaine 2008). For all three
cases, we adopt the NFW profile as in Eq. (2), with the
best-fit scale radius. For the Osipkov–Merritt model, we
use the best-fit anisotropy radius. It is shown in Fig. 2
and also suggested by the chi-square test for the models
considered that the analytic VDFs do not describe the
simulated VDF well.
Our VDF model, Eq. (1), consists of two terms: the

exponential term and the cut-off term. The origin of the

the exponential term can be explained by the anisotropy
in velocity space. Fig. 3 shows the distributions, the dis-
persion, and the kurtosis of the velocity vectors along
the three axes of the spherical coordinate. Kurtosis is a
measure of the peakedness of a distribution, defined as
(
∑

i v
4
i )/(

∑

i v
2
i )

2 − 3, where vi is the velocity of the i-th
particle along one axis, and this value is zero for the nor-
mal distribution. The ratios of dispersion between the
three axes are close to one at small radii, and the ratios
increase with radius. The kurtosis, on the other hand,
is in general non-zero and decreases with radius. An
important consequence of the non-zero kurtosis is that
even if the dispersion along the three axes are similar
(anisotropy parameter β ∼ 0), the velocity vectors do
not follow an isotropic multivariate normal distribution
in any coordinate system (even after a local coordinate
transformations). In other words, as long as there exists
either anisotropy or non-zero kurtosis in a certain coordi-
nate, the norms of the velocity vectors will not follow the
Maxwell–Boltzmann distribution. Indeed, Fig. 3 shows
that in the simulations, one always has non-zero kurto-
sis and/or anisotropy. Other simulations also indicate
that the velocity vectors of dark matter particles have
anisotropy (Abel et al. 2011; Sparre & Hansen 2012) and
non-zero kurtosis (Vogelsberger et al. 2009). We further
found that if the ratios of dispersion between the three
axes of a multivariate normal distribution are around 0.2
to 0.6, the norms of those random vectors will follow a
distribution which resembles our model without the cut-
off term, v2 exp(−v/v0). (For a formal discussion on this
topic, see e.g. Bjornson et al. 2009.) This suggests that if
one can find a coordinate system where the distributions
of the velocity components are all distributed normally
(with zero kurtosis), there will be a larger difference be-
tween the dispersion along the three axes in this new
coordinate system than in the spherical coordinate.
The (v2esc − v2)p term in our VDF model introduces a

cut-off at the escape velocity. It further suppresses the
VDF tail more than the exponential term alone does. De-
spite that this cut-off term has the form of a power-law
in (binding) energy, the best-fit values of the parameter
p does not necessarily reflect the “asymptotic” power-
law index k, defined as k = limE→0(d ln f/d ln E), where
f(E) is the (binding) energy distribution function. The
relation between k and the outer density slope has been
studied in the literature (Evans & An 2006; Lisanti et al.
2011). However, because d ln f/d ln E deviates from its
asymptotic value k rapidly as E deviates from zero,
the asymptotic power-law index k could be very differ-
ent from the best-fit power-law index for the VDF tail
(e.g. v > 0.9vesc). Furthermore, the shape of the VDF
power-law tail could be set by recently-accreted subha-
los that have not been fully phase-mixed (Kuhlen et al.
2012), and hence has no simple relation with the density
profile. In high-resolution simulated dark matter halos,
particles stripped off of a still-surviving subhalo are seen
to significantly impact the tail of the VDF. A larger sam-
ple of simulations at higher resolution than we consider
in the current analysis will be needed to further test this
hypothesis.

4. HALO-TO-HALO SCATTER IN VELOCITY
DISTRIBUTIONS

Mao, Strigari, Wechsler
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FIG. 5. Tangential vs radial velocity components (km/s) of dark matter within a radial shell 7.5 < r < 9.5

kpc in the Galactic frame. On the left, the distribution for dark matter debris and in the middle, the

distribution for all VL2 particles in this radial shell. The right panel shows the distribution of debris

particles (blue triangles) and all VL2 particles without the debris contribution (red circles) as a function of

cos ✓e, where ✓e is the angle between the velocities of the particles in the Galactic frame and the direction

of Earth’s motion.

where the threshold speed v

min

is given by
p

mNER/2µ

2 for elastic scattering. If the scattering

is dominated by a Maxwellian distribution f(v) / v

2

e

�v2/v2
0 in the Galactic frame, the expected

recoil spectrum is exponentially falling [1]. If, in contrast, the local dark matter is dominated by a

stream, then the scattering rate is constant up to a recoil energy corresponding to |~v
stream

�~ve| [62],

where ~ve is given in Eq. 2.

The particles in the debris flow have speeds characterized by the distribution function

f(v) =
1

N

dN

dv

=
1

N

dN

d cos ✓e

d cos ✓e

dv

(5)

in the Earth frame, where N is the total number of debris particles and ✓e is the angle between

the velocities of the flow particles in the Galactic frame and the direction of Earth’s motion. This

angle is related to the Earth-frame velocities through

v

2 = v

2

flow

+ ve(t)
2 � 2v

flow

ve(t) cos ✓e, (6)

where v

flow

is the speed of the debris flow in the Galactic frame. A complete expression for f(v)

depends on how the debris particles are distributed as a function of cos ✓e. Figure 5 shows the

tangential and radial Galactic-frame velocity distributions for the debris (left) and for all VL2

particles (middle) in a 7.5–9.5 kpc radial shall. The right panel shows the distribution of debris

particles as a function of cos ✓e. The results show that the debris flow is nearly uniformly distributed

(isotropic) in cos ✓e, with dN/d cos ✓e = N/2.

Debris flow, Lisanti et al.
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Local abundance and velocity distribution are inputs into 
the interpretation of direct detection experiments

Only way to measure these things is through direct 
detection experiments

The second possibility contains a dark matter form fac-
tor F�i (following the standard normalization convention
F�i(ER = 0) = 1) and commonly occurs in models of
composite dark matter [45–47]. Our formalism will han-
dle the factorizable forms, i.e., the first three of Eq. (10),
which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
most general form written on the fourth line of Eq. (10)].

We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.

IV. DECONVOLUTED SCATTERING RATE

Since the scattering rate (8) in any given direct de-
tection experiment is proportional to the nuclear form
factor, we first factor it out. This leads to a definition of
a new quantity, R, that we call the “deconvoluted scat-

tering rate” – deconvoluted of the nuclear form factor,

R ⇥ 1

F 2
N (ER)

dR

dER

=
⇧

i

NimN

⌃ vmax

vi,min

dvi vifi1(vi)⇤̄i(vi, ER). (11)

Some overall factors have been buried into a normaliza-
tion factor, Ni = NT ⇥�i/(µ

2
im�i). While there are im-

portant uncertainties in the determination of dark mat-
ter nuclear form factors from nuclear data [48], this is
not our concern. Errors on the deconvoluted scattering
rate ought to take into account nuclear form factor un-
certainties.
Next, taking a derivative with respect to ER we find

dR
dER

=
⇧

i

NimN

⇤⌃ vmax

vi,min

dvivifi1(vi)
d⇤̄i(vi, ER)

dER

�vi,min
dvi,min

dER
fi1(vi,min)⇤̄(vi,min, ER)

⇥
. (12)

For arbitrary 2 ⌅ 2 kinematics (elastic or inelastic), we
can replace

vi,min
dvi,min

dER
=

m2
NE2

R � µ2
i �

2
i

4mNµ2
iE

2
R

. (13)

This is as far as we can go with a general signal from an
ensemble of WIMPs with arbitrary cross sections.
For a single WIMP with a factorizable cross section,

Eq. (11) can be used to solve for f1(v) (see also [49–52]):

f1(vmin(ER)) = � 4µ2E2
R

m2
NE2

R � µ2�2
1

N⇤0(vmin(ER))F 2
�(ER)

⇤
dR
dER

�R 1

F 2
�(ER)

dF 2
�(ER)

dER

⌅
. (14)

This result allows us to gain information on the velocity
distribution of dark matter evaluated at the minimum
velocity to scatter for a given recoil energy ER. With
scattering data over the range Emin

R < ER < Emax
R , we

obtain information on the velocity distribution f(v) over
a range of v: vmin(Emin

R ) < v < vmin(Emax
R ).

For an ensemble of WIMPs, ⌅i, without dark matter
form factors, the inversion result can be written as

dR
dER

=
⇧

i

wi(v, ER)fi1(v) , (15)

where the velocity distributions of the WIMPs are
“weighted” by the factors

wi(v, ER) = �1

4

�
m2

N

µ2
i

� �2i
E2

R

⇥
Ni⇤i0(v) (16)

For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate

4

f-condition:
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This result allows us to gain information on the velocity
distribution of dark matter evaluated at the minimum
velocity to scatter for a given recoil energy ER. With
scattering data over the range Emin

R < ER < Emax
R , we

obtain information on the velocity distribution f(v) over
a range of v: vmin(Emin

R ) < v < vmin(Emax
R ).

For an ensemble of WIMPs, ⌅i, without dark matter
form factors, the inversion result can be written as
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For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate
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The second possibility contains a dark matter form fac-
tor F�i (following the standard normalization convention
F�i(ER = 0) = 1) and commonly occurs in models of
composite dark matter [45–47]. Our formalism will han-
dle the factorizable forms, i.e., the first three of Eq. (10),
which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
most general form written on the fourth line of Eq. (10)].

We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.
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Here we use the reduced mass defined with respect to the
incoming particles,
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which taking �N ⇧ 0 is the well-known result for in-
elastic dark matter (iDM) [40–42]. By “safe” we mean
that our upper bound on vmin, which is in the far non-
relativistic regime, automatically implies |�| ⌅ m�,mN

to allow scattering to be kinematically possible.
Up to higher order terms in �/m, we obtain an expres-

sion for the recoil energy
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The recoil energy is unique for a given fixed scattering
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be solved by the usual quadratic formula,
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This result has the well known feature that the smallest
recoil energies come from maximizing v2 cos2 ⇥lab, corre-
sponding physically to head-on collisions at the highest
velocities available.

III. EVENT DISTRIBUTIONS

Our basic assumptions consist of assuming the scat-
tering process is o⇥ only one type of nuclei. We will,
however, remain general with respect to the possibility of
multiple WIMPs with di⇥erent masses, abundances, and
cross sections. One might think it requires a large coin-
cidence to have several dark matter particles with cross
sections large enough to produce events in an experiment.
However, there are well known counterexamples where it
can be natural to have the abundance of particles to be

independent of their mass (and thus, have several candi-
dates of di⇥erent masses with similar abundances, using
for example the WIMPless miracle [43]).
The event rate of dark matter scattering [44], di⇥eren-

tial in ER, is determined by
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where the sum is over di⇥erent species of WIMPs, mN ⌃
Amp is the nucleus mass with mp the proton mass and
A the atomic number. The recoil energy depends on the
kinematics of the collision, as described above. Given
our assumption of no significant time variation in the
rate, f(⇧vi(t)) ⇧ f(⇧vi), and thus we are e⇥ectively ne-
glecting the Earth’s motion around the Sun. This is a
reasonable approximation so long we are probing veloci-
ties larger than Earth’s velocity in the Sun’s frame, i.e.,
vmax � 30 km/s. Typically the maximum speed is taken
to be vmax = vearth + vesc, the galactic escape velocity
boosted into the Earth frame. However, vmax is ulti-
mately determined by the (unknown) details of the dark
matter velocity distribution in Earth frame.
Given our assumption of no direction dependent signal,

we can carry out the angular integral in Eq. (7), reduc-
ing it to a one dimensional integral where we introduce
the quantity1 f1(v) =
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The di⇥erent forms for ⌅̄ correspond to functional forms
of known dark matter scattering that contain velocity
and/or recoil energy dependence. The first possibility,
a constant independent of v and ER is the well-known
isotropic (s-wave) cross section that results at lowest
order in the non-relativistic expansion from many dark
matter models.

1 The velocity distribution is normalized such that
�
d3vf(v) = 1.
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f-condition:

The second possibility contains a dark matter form fac-
tor F�i (following the standard normalization convention
F�i(ER = 0) = 1) and commonly occurs in models of
composite dark matter [45–47]. Our formalism will han-
dle the factorizable forms, i.e., the first three of Eq. (10),
which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
most general form written on the fourth line of Eq. (10)].

We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.

IV. DECONVOLUTED SCATTERING RATE

Since the scattering rate (8) in any given direct de-
tection experiment is proportional to the nuclear form
factor, we first factor it out. This leads to a definition of
a new quantity, R, that we call the “deconvoluted scat-

tering rate” – deconvoluted of the nuclear form factor,
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Some overall factors have been buried into a normaliza-
tion factor, Ni = NT ⇥�i/(µ

2
im�i). While there are im-

portant uncertainties in the determination of dark mat-
ter nuclear form factors from nuclear data [48], this is
not our concern. Errors on the deconvoluted scattering
rate ought to take into account nuclear form factor un-
certainties.
Next, taking a derivative with respect to ER we find
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For arbitrary 2 ⌅ 2 kinematics (elastic or inelastic), we
can replace
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This is as far as we can go with a general signal from an
ensemble of WIMPs with arbitrary cross sections.
For a single WIMP with a factorizable cross section,

Eq. (11) can be used to solve for f1(v) (see also [49–52]):
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R

m2
NE2

R � µ2�2
1

N⇤0(vmin(ER))F 2
�(ER)

⇤
dR
dER

�R 1

F 2
�(ER)

dF 2
�(ER)

dER

⌅
. (14)

This result allows us to gain information on the velocity
distribution of dark matter evaluated at the minimum
velocity to scatter for a given recoil energy ER. With
scattering data over the range Emin

R < ER < Emax
R , we

obtain information on the velocity distribution f(v) over
a range of v: vmin(Emin

R ) < v < vmin(Emax
R ).

For an ensemble of WIMPs, ⌅i, without dark matter
form factors, the inversion result can be written as

dR
dER
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wi(v, ER)fi1(v) , (15)

where the velocity distributions of the WIMPs are
“weighted” by the factors

wi(v, ER) = �1
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For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate
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The second possibility contains a dark matter form fac-
tor F�i (following the standard normalization convention
F�i(ER = 0) = 1) and commonly occurs in models of
composite dark matter [45–47]. Our formalism will han-
dle the factorizable forms, i.e., the first three of Eq. (10),
which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
most general form written on the fourth line of Eq. (10)].

We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.

IV. DECONVOLUTED SCATTERING RATE

Since the scattering rate (8) in any given direct de-
tection experiment is proportional to the nuclear form
factor, we first factor it out. This leads to a definition of
a new quantity, R, that we call the “deconvoluted scat-
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This is as far as we can go with a general signal from an
ensemble of WIMPs with arbitrary cross sections.
For a single WIMP with a factorizable cross section,

Eq. (11) can be used to solve for f1(v) (see also [49–52]):
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This result allows us to gain information on the velocity
distribution of dark matter evaluated at the minimum
velocity to scatter for a given recoil energy ER. With
scattering data over the range Emin

R < ER < Emax
R , we

obtain information on the velocity distribution f(v) over
a range of v: vmin(Emin

R ) < v < vmin(Emax
R ).

For an ensemble of WIMPs, ⌅i, without dark matter
form factors, the inversion result can be written as
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For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate
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Here we use the reduced mass defined with respect to the
incoming particles,
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The recoil energy of the collision is ER = q2/2m�
N with
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which taking �N ⇧ 0 is the well-known result for in-
elastic dark matter (iDM) [40–42]. By “safe” we mean
that our upper bound on vmin, which is in the far non-
relativistic regime, automatically implies |�| ⌅ m�,mN

to allow scattering to be kinematically possible.
Up to higher order terms in �/m, we obtain an expres-

sion for the recoil energy
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be solved by the usual quadratic formula,
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This result has the well known feature that the smallest
recoil energies come from maximizing v2 cos2 ⇥lab, corre-
sponding physically to head-on collisions at the highest
velocities available.

III. EVENT DISTRIBUTIONS

Our basic assumptions consist of assuming the scat-
tering process is o⇥ only one type of nuclei. We will,
however, remain general with respect to the possibility of
multiple WIMPs with di⇥erent masses, abundances, and
cross sections. One might think it requires a large coin-
cidence to have several dark matter particles with cross
sections large enough to produce events in an experiment.
However, there are well known counterexamples where it
can be natural to have the abundance of particles to be

independent of their mass (and thus, have several candi-
dates of di⇥erent masses with similar abundances, using
for example the WIMPless miracle [43]).
The event rate of dark matter scattering [44], di⇥eren-
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where the sum is over di⇥erent species of WIMPs, mN ⌃
Amp is the nucleus mass with mp the proton mass and
A the atomic number. The recoil energy depends on the
kinematics of the collision, as described above. Given
our assumption of no significant time variation in the
rate, f(⇧vi(t)) ⇧ f(⇧vi), and thus we are e⇥ectively ne-
glecting the Earth’s motion around the Sun. This is a
reasonable approximation so long we are probing veloci-
ties larger than Earth’s velocity in the Sun’s frame, i.e.,
vmax � 30 km/s. Typically the maximum speed is taken
to be vmax = vearth + vesc, the galactic escape velocity
boosted into the Earth frame. However, vmax is ulti-
mately determined by the (unknown) details of the dark
matter velocity distribution in Earth frame.
Given our assumption of no direction dependent signal,

we can carry out the angular integral in Eq. (7), reduc-
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The di⇥erent forms for ⌅̄ correspond to functional forms
of known dark matter scattering that contain velocity
and/or recoil energy dependence. The first possibility,
a constant independent of v and ER is the well-known
isotropic (s-wave) cross section that results at lowest
order in the non-relativistic expansion from many dark
matter models.

1 The velocity distribution is normalized such that
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The second possibility contains a dark matter form fac-
tor F�i (following the standard normalization convention
F�i(ER = 0) = 1) and commonly occurs in models of
composite dark matter [45–47]. Our formalism will han-
dle the factorizable forms, i.e., the first three of Eq. (10),
which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
most general form written on the fourth line of Eq. (10)].

We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.

IV. DECONVOLUTED SCATTERING RATE

Since the scattering rate (8) in any given direct de-
tection experiment is proportional to the nuclear form
factor, we first factor it out. This leads to a definition of
a new quantity, R, that we call the “deconvoluted scat-

tering rate” – deconvoluted of the nuclear form factor,

R ⇥ 1

F 2
N (ER)

dR

dER

=
⇧

i

NimN

⌃ vmax

vi,min

dvi vifi1(vi)⇤̄i(vi, ER). (11)

Some overall factors have been buried into a normaliza-
tion factor, Ni = NT ⇥�i/(µ

2
im�i). While there are im-

portant uncertainties in the determination of dark mat-
ter nuclear form factors from nuclear data [48], this is
not our concern. Errors on the deconvoluted scattering
rate ought to take into account nuclear form factor un-
certainties.
Next, taking a derivative with respect to ER we find

dR
dER

=
⇧

i

NimN

⇤⌃ vmax

vi,min

dvivifi1(vi)
d⇤̄i(vi, ER)

dER

�vi,min
dvi,min

dER
fi1(vi,min)⇤̄(vi,min, ER)

⇥
. (12)

For arbitrary 2 ⌅ 2 kinematics (elastic or inelastic), we
can replace

vi,min
dvi,min

dER
=

m2
NE2

R � µ2
i �

2
i

4mNµ2
iE

2
R

. (13)

This is as far as we can go with a general signal from an
ensemble of WIMPs with arbitrary cross sections.
For a single WIMP with a factorizable cross section,

Eq. (11) can be used to solve for f1(v) (see also [49–52]):

f1(vmin(ER)) = � 4µ2E2
R

m2
NE2

R � µ2�2
1

N⇤0(vmin(ER))F 2
�(ER)

⇤
dR
dER

�R 1

F 2
�(ER)

dF 2
�(ER)

dER

⌅
. (14)

This result allows us to gain information on the velocity
distribution of dark matter evaluated at the minimum
velocity to scatter for a given recoil energy ER. With
scattering data over the range Emin

R < ER < Emax
R , we

obtain information on the velocity distribution f(v) over
a range of v: vmin(Emin

R ) < v < vmin(Emax
R ).

For an ensemble of WIMPs, ⌅i, without dark matter
form factors, the inversion result can be written as

dR
dER

=
⇧

i

wi(v, ER)fi1(v) , (15)

where the velocity distributions of the WIMPs are
“weighted” by the factors

wi(v, ER) = �1

4

�
m2

N

µ2
i

� �2i
E2

R

⇥
Ni⇤i0(v) (16)

For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate
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(Deconvoluted) rate is a monotonically decreasing 
function, or there is non-standard particle physics e.g. 

inelastic or a increasing DM form factor

[PJF, Kribs, Tait]
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Two experiments allow us to test particle 
physics independent of astrophysics
1) Make hypothesis about DM e.g. elastically scattering DM 
with mass 100 GeV and x-sec 10-40 cm2

2) Use experiment A to extract astrophysics i.e. rho x f(v)
3) Use these extracted astrophysics properties to predict 
result at experiment B
4) Compare to B’s measurement/bound
5) Rule in our out each particle physics hypothesis 

Doesn’t allow extraction of “unique” x-sec, mass
Need relatively large statistics ~10’s events
Experiments must run over same part of year
Other uncertainties (nuclear, atomic etc not addressed)
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Halo model independence
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Recoil energy uniquely determines 
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This brings to the central point of our e�orts: to make a comparison between two ex-

periments one must first determine whether the vmin space probed by the two experiments

overlaps. As a matter of practical course, a given experiment has a lower energy threshold

Emin, which can be translated into a lower bound on the vmin range. If experiment 1 has

data for the di�erential rate of DM scattering in their experiment, dR1/dER at energies E(1)
i

this can be used to predict a rate at energy E(2)
i at experiment 2, dR2/dER, or vice versa if

experiment 2 has the signal. Thus, we have

[E(1)
low, E

(1)
low] �⇥ [vlowmin, v

high
min ] �⇥ [E(2)

low, E
(2)
high], (6)

where

[E(2)
low, E

(2)
high] =

µ2
2M

(1)
T

µ2
1M

(2)
T

[E(1)
low, E

(1)
high]. (7)

We can invert (1) to solve for g(vmin) limited to the range vmin ⇤ [vlowmin,1, v
high
min,2]

g(vmin) =
2m�µ2

NA�mp ⇥ ⇤(ER)

dR1

dE1
(8)

This then allows us to explicitly state the expected rate for experiment two, again 2 re-

stricted to the energy range dictated by the appropriate velocity range i.e. E ⇤ [E(2)
low, E

(2)
high].

Analogous to the energy mapping above, we have a rate mapping,

dR1

dE1
�⇥ g(vmin) �⇥ dR2

dE2
, (9)

with

dR2

dER
(E2) =

�(2)µ2
1

�(1)µ2
2

⇤2(E2)

⇤1

�
µ2
1 M

(2)
T

µ2
2M

(1)
T

E2

⇥ dR1

dER

⇤
µ2
1 M

(2)
T

µ2
2 M

(1)
T

E2

⌅
. (10)

Equations (7), (8) and (10) are the central results of this paper. They make no astrophysical

assumptions, but only rely upon the assumption that an actual signal has been observed.

We now focus on the SI case, since there are a greater number of experiments probing

this scenario, but the analysis for SD is similar. In this (SI) case we can use (5) to rewrite

2 Since g(v), by its definition, is a monotonically decreasing function of vmin, one can in principle go to

lower energies as well, but one may only place a lower bound on the predicted rate, rather than make a

true prediction.
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Figure 12: Modulation amplitude in the range 1.5–3.1 keVee as a function of dark matter mass, where
the dark matter cross section is normalized to fit the modulation amplitude in the first bin (left) and
over the whole energy range (right). The colors indicate di�erent spectral indices for Eq. 4.2: k=1
(blue), k=2 (pink), k=3 (green). The regions between (above) the solid (dashed) lines indicate points
that overpredict the unmodulated rate by at least 2⇥ from 0.5–1.5 keVee (1.5–3.1 keVee). The solid
colored bands are the only regions consistent with the unmodulated rate spectrum. The gray band is
the modulated amplitude with 1⇥ error bars for the 1.5–3.1 keVee region.

4.3 Model-Independent Comparisons

In this subsection, we explore the constraints from other experiments on the CoGeNT mod-

ulation, assuming it arises from elastic dark matter. Comparing rates between di�erent

direct detection experiments with di�erent target nuclei is non-trivial because each probes

a di�erent range of dark matter velocities. However, a means of comparing the results of

di�erent experiments independent of halo models has recently been proposed [44].4 For elas-

tic spin-independent scattering, a signal in the range [E(1)
low,E

(1)
high] at Experiment 1 arises in

Experiment 2 in the energy range

[E(2)
low,E

(2)
high] =

µ2
2M

(1)
T

µ2
1M

(2)
T

[E(1)
low,E

(1)
high] , (4.3)

where M (i)
T is the mass of the target nucleus in each experiment and µi is the DM-nucleus

reduced mass for each experiment. For a rate, dR1/dER, observed at Experiment 1, the rate

expected at Experiment 2 is

dR2

dER
(E2) =

C(2)
T

C(1)
T

F 2
2 (E2)

F 2
1

�
µ2
1 M

(2)
T

µ2
2M

(1)
T

E2

⇥ dR1

dER

⇤
µ2
1M

(2)
T

µ2
2M

(1)
T

E2

⌅
. (4.4)

4For related work see [45].
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Bin CoGeNT Ge Na (Q=0.3) Si O Xe

1
[0.5,0.9] [2.3,3.8] [1.5,2.5] [4.5,7.6] [5.8,9.9] [1.4,2.3]

0.90± 0.72 0.23± 0.18 0.078± 0.062 0.035± 0.028 0.011± 0.009 0.72± 0.58

2
[0.9,1.5] [3.8,6.1] [2.5,4.0] [7.6,11.9] [9.9,15.6] [2.3,3.7]

0.37± 0.55 0.1± 0.149 0.035± 0.052 0.015± 0.023 0.005± 0.008 0.31± 0.46

3
[1.5,2.3] [6.1,8.9] [4.0,5.8] [11.9,17.5] [15.6,22.8] [3.7,5.4]

0.48± 0.22 0.136± 0.063 0.049± 0.022 0.021± 0.01 0.007± 0.003 0.41± 0.19

4
[2.3,3.1] [8.9,11.6] [5.8,7.6] [17.5,22.8] [22.8,29.8] [5.4,7]

0.27± 0.23 0.08± 0.068 0.029± 0.025 0.013± 0.011 0.004± 0.004 0.23± 0.2

Table 2: Predicted modulation amplitudes for example nuclear targets, given the best-fit values for
CoGeNT assuming a Maxwellian phase. The units are in counts/day/kg/keVnr for all columns, except
that labelled CoGeNT where they are counts/day/kg/keVee. The equivalent energy ranges and rates
for other targets are shown, assuming m� = 7 GeV and spin-independent scattering cross sections
proportional to A2. Note that we have not included detector e⇥ciencies or mass fractions in any of
the predicted rates.

Here,

C(i)
T = �(i)

�
fp Z

(i) + fn (A
(i) � Z(i))

⇥2
, (4.5)

where � is the mass fraction for the target element in question, and Fi is the nuclear form

factor for each experiment.

Tables 2 and 3 show the ranges of energies at other experiments that correspond to the

CoGeNT energy bins: [0.5, 0.9], [0.9, 1.5], [1.5, 2.3], and [2.3, 3.1] keVee. Note that these

energies are given in “electron equivalent” and correspond to [2.3, 3.8], [3.8, 6.1], [6.1, 8.9],

and [8.9, 11.6] in nuclear recoil energies. These tables also show how the CoGeNT modulation

amplitude in each energy bin translates to other experiments, assuming a 7 GeV WIMP with

spin-independent scattering proportional to A2. (Note that we have not included detector

e⇥ciencies or mass fractions in any of the predicted rates.) Let us consider each experiment

in turn.

CDMS-Ge: A direct comparison can be made between the CoGeNT and CDMS count

rates because they both have germanium targets. Using the results of the low-energy analysis

of the CDMS experiment [16], we calculate an upper limit for the rate in each detector such

that it has a 1.3% probability of having a lower rate. This gives a probability of 10% that

any one of CDMS’s eight detectors has a lower rate than is observed. In each of the five

energy bins, the strongest limit from all the detectors is chosen and we treat this as a 90%

confidence limit.5 Figure 13 shows that the count rates at CDMS are not low enough to

constrain the CoGeNT modulation. However, the count rates are low enough that there

should be modulation at a very high level in CDMS. Thus, even weak modulation constraints

5The probability that the particular detector that sets the limit has a strong downward fluctuation is small,

and so the confidence is actually better than 90%, but we treat it as a 90% C.L. to be conservative.
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FIG. 1: v
min

thresholds for various experiments. Solid bands are CRESST Oxygen band, 15-

40 keV (red, top), DAMA Na band 6.7-13.3 keV (green, middle), CoGeNT Ge 1.9-3.9 keV (blue,

bottom). Constraints are Xenon 1, 2 and 5 keV (dashed, dotted, and dot-dashed, thick blue), and

CDMS-Si 7 and 10 keV, (dot-dashed and dashed, thin red).

some with signals, some without. The possible comparisons between these various exper-

iments will be the subject of the subsequent sections. Using (11) scattering rates can be

compared between experiments. However, to compare to actual experimental data the rel-

ative exposures, e�ciencies and other detector-specific factors must be correctly taken into

account. In the next section we describe in detail the experimental parameters necessary

for the comparisons in the rest of the paper.

III. APPLICATIONS: A COMPARISON OF EXISTING EXPERIMENTS

The important consequences of (10) are immediately obvious. In principle, one can com-

pare a positive signal at one experiment with one at another, or test the compatibility of a

null result with a positive one. Unfortunately, ideal circumstances will rarely present them-

selves: additional backgrounds can complicate the extraction of g(v), resolution can smear

signals, or uncertainties in atomic physics (such as quenching factors) can complicate issues,

making a precise extraction of the true E
NR

and hence v
min

impossible. Furthermore, the

signal may appear as a modulation (as in DAMA) limiting access to g(v) to a summer/winter

7

Using vmin space
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This brings to the central point of our e�orts: to make a comparison between two ex-

periments one must first determine whether the vmin space probed by the two experiments

overlaps. As a matter of practical course, a given experiment has a lower energy threshold

Emin, which can be translated into a lower bound on the vmin range. If experiment 1 has

data for the di�erential rate of DM scattering in their experiment, dR1/dER at energies E(1)
i

this can be used to predict a rate at energy E(2)
i at experiment 2, dR2/dER, or vice versa if

experiment 2 has the signal. Thus, we have

[E(1)
low, E

(1)
low] �⇥ [vlowmin, v

high
min ] �⇥ [E(2)

low, E
(2)
high], (6)

where

[E(2)
low, E

(2)
high] =

µ2
2M

(1)
T

µ2
1M

(2)
T

[E(1)
low, E

(1)
high]. (7)

We can invert (1) to solve for g(vmin) limited to the range vmin ⇤ [vlowmin,1, v
high
min,2]

g(vmin) =
2m�µ2

NA�mp ⇥ ⇤(ER)

dR1

dE1
(8)

This then allows us to explicitly state the expected rate for experiment two, again 2 re-

stricted to the energy range dictated by the appropriate velocity range i.e. E ⇤ [E(2)
low, E

(2)
high].

Analogous to the energy mapping above, we have a rate mapping,

dR1

dE1
�⇥ g(vmin) �⇥ dR2

dE2
, (9)

with

dR2

dER
(E2) =

�(2)µ2
1

�(1)µ2
2

⇤2(E2)

⇤1

�
µ2
1 M

(2)
T

µ2
2M

(1)
T

E2

⇥ dR1

dER

⇤
µ2
1 M

(2)
T

µ2
2 M

(1)
T

E2

⌅
. (10)

Equations (7), (8) and (10) are the central results of this paper. They make no astrophysical

assumptions, but only rely upon the assumption that an actual signal has been observed.

We now focus on the SI case, since there are a greater number of experiments probing

this scenario, but the analysis for SD is similar. In this (SI) case we can use (5) to rewrite

2 Since g(v), by its definition, is a monotonically decreasing function of vmin, one can in principle go to

lower energies as well, but one may only place a lower bound on the predicted rate, rather than make a

true prediction.
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assumptions, but only rely upon the assumption that an actual signal has been observed.

We now focus on the SI case, since there are a greater number of experiments probing

this scenario, but the analysis for SD is similar. In this (SI) case we can use (5) to rewrite

2 Since g(v), by its definition, is a monotonically decreasing function of vmin, one can in principle go to

lower energies as well, but one may only place a lower bound on the predicted rate, rather than make a

true prediction.
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Solve for g(v)

For instance, [38] argued that an independent comparison for the iodine spin-independent

explanation of DAMA could be made by studying the comparable range of energy at a

Xenon target, given their kinematical similarity. It was pointed out in [39] that there is an

overlap in velocity space between the � 1keVee signal at CoGeNT and the 7 keVr threshold

at CDMS-Si. With positive results at two experiments, a measurement of the WIMP mass

can be done without assuming a halo model [40]. Finally, [41] studied the possibility of

extracting f(v) from dark matter experiments in the future when large signals have been

found.

In this paper, we take a di�erent approach. Rather than attempt to find the physical

function f(v), or study variations in it, we attempt to directly map experimental signals from

one detector to another. We do this by focusing on integral quantities, namely g(vmin) =
�
vmin

dvf(v)/v and
�
dv vg(v). We determine the robustness of constraints by considering

the relationship between recoil energy and vmin space, rather than actual velocity space.

Although in our approaches we will gain less information about astrophysics, we can compare

experiments even when f(v) cannot be reliably extracted.

II. vmin RANGES AND ASTROPHYSICS-INDEPENDENT SCATTERING

RATES

Our approach will be simple: we will endeavor to map an energy range in a given ex-

periment into the halo velocity space, and from there into any other experiment we wish to

compare to. In this way, we can determine what energy ranges of experiments can be di-

rectly compared. In optimal situations, we will be able to extract g(v), while in less optimal

situations we will only be able to discuss total rates.

We begin with the di�erential rate at a direct detection experiment, which for elastically

scattering DM is given by,

dR

dER
=

NTMT⇥

2m�µ2
⇤(ER) g(vmin) , (1)

where µ is the DM-nucleus reduced mass, and NT = �NAmp/MT is the number of target

scattering sites per kg with NA Avogadro’s number and � the mass fraction of the detector

that is scattering DM. The function g(vmin) is related to the integral of the DM speed
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The master formula (SI):
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where we have introduced a target specific coe⇥cient

C(i)
T = ⇥(i)

�
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(i) + fn (A
(i) � Z(i))

⇥2
. (12)

In certain situations di�erential rates may not be available and instead it is only possible

to compare total rates, this is the situation at present with CRESST. In general the total

rate at a particular experiment with energy — and corresponding velocity — thresholds of

(Elow, vlowmin) and (Ehigh, v
high
min ), can be expressed as,

R =
2NA⇤mp

m�
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MT

⌥ vhigh

vlow

dv �(ER)⌅(ER(v))vg(v) . (13)

For the particular case of SI on which we are focused this becomes,
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where �(ER) an an energy-dependent e⇥ciency. To compare two experiments, we must

extract the energy dependent terms from the integral. So while we make no assumptions

about g(v), we evaluate the form factor at a value Ē2 = Ē1µ2
2M

(1)
T /µ2

1M
(2)
T where the ra-

tio �2(Ē2)F 2
2 (Ē2)/�1(Ē1)F 2

1 (Ē1) is minimized or maximized, depending on whether we are

considering a putative signal or constraint. Thus comparisons of rates at two experiments

may then be simply compared by taking ratios of CT with the form factor evaluated at the

conservative value Ē,
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In order to determine what comparisons can be made between experiments, we must ex-

amine the relevant velocity space they probe. We re-emphasize that the signal at energy

Elow < E < Ehigh is sensitive to all particles with velocity greater than vmin(E,MN ,M�)

through the integral g(vmin). A separate experiment with threshold Ẽ will o�er constraints

independent of astrophysics if the resulting minimum velocity ṽ < v2. The optimal limits are

reached when ṽ < v1. We illustrate this in Fig. 1 for an ensemble of experiments, some with
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FIG. 2: The extracted CoGeNT signal (left and bottom axes) and the rate it is mapped to on a

Xenon target (top and right axes) for m� = 10GeV (rescaled by form factors at the corresponding

energies F 2
Xe(E

Xe
R ), F 2

Ge(E
Ge
R ) � 1). The dashed line is the lower bound on the rate at low energies,

using the monotonically falling nature of g(vmin).

discussion in [41]), and thus the value at the low end of this range is a lower bound for

lower values of v. This is not especially relevant for our analysis here, but would be likely

relevant in situations where the other experiments could probe lower energies as well.

Since we will compare this with the XENON10 experiment, we choose fp = 1 and fn = 0,

which is motivated from light mediators mixing with the photon, since it will give the most

lenient bounds. Using (11) we can map the CoGeNT signal onto a Xenon target, and study

the signal that would arise at XENON10. We show this in figure 2.

What is remarkable about this figure is that – once the CoGeNT signal is specified – the

expected rate on a Xenon target is completely unambiguous (and similarly on any other

target). This involves no assumptions about the halo escape velocity, velocity dispersion, or

even the assumption that the velocity distribution is Maxwellian, but requires only an input

of the WIMP mass.

After taking into account exposure and the detector e�ciencies (MIN, MED and MAX

cases described above) we can predict the total number of events predicted by the CoGeNT
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mχ = 10 GeV

CoGeNT and XENON10
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Figure 2. The CDMS-Si and XENON10/100 results translated into vmin-space. The upper panels
show the case m� = 9 GeV for two choices of binning. In the left (right) panel the bin width is 2 keV
(3 keV). The choice of binning does not alter our conclusions. For all the cases considered, the region
of vmin-space probed by CDMS-Si is constrained by XENON10/100.

(upper panels) and m� = 7GeV and m� = 11GeV (lower left and lower right panels respec-
tively). Binning the data introduces a certain arbitrariness so we check the robustness of our
results by considering two choices of the bin width: 2 keV and 3 keV for the upper left and
right panels of Fig. 2 respectively. The inferred values for g̃(v

min

) agree well, implying that
our conclusions are largely independent of the choice of bin width. In all cases, the highest
bin is in significant tension with the XENON100 bound except for the case m� = 7GeV,
corresponding to the least constrained mass in Fig. 1.

We observe from Fig. 2 that all three experiments probe essentially the same region
of v

min

-space. This suggests that it will not be possible to significantly improve the consis-
tency of CDMS-Si and XENON10/100 by varying astrophysical parameters. To explicitly
demonstrate that this is so, we consider two variations in astrophysical parameters. In the
left panel of Fig. 3 we keep the usual Maxwell-Boltzmann velocity distribution but choose
v
0

= 250 km/s and v
esc

= 650 km/s, which are at the upper end of the allowed range for these
parameters (see e.g. [17] and references within). Although we see that the CDMS-Si region
and XENON10/100 bounds move towards lower masses by ⇠ 1GeV, the tension between the
experiments remains essentially unchanged. As a more radical modification we consider the

– 7 –

A new plot
XENON100: New Spin-Independent Results

Upper Limit (90% C.L.) is 2 x 10-45 cm2  for 55 GeV/c2 WIMP
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A more direct comparison of data than x-sec--m plots
Easy to derive from data
Ultimately allows measurement of g(v)
Consistency of g(v) determines allowed DM params

In addition to standard       plots because..σ − m
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Conclusions

•DM is definitely out there
•Many possibilities for what it is
•Searching on many fronts
•VERY exciting times
•Did not have time to talk about MANY things
•......
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