The Principles of Dark Matter Direct Detection

Patrick Fox

‡ Fermilab

Fermilab Academic Lectures 2013

- •Evidence for DM, and its gross properties
- Relic abundance and thermal DM
 WIMP DM
- •Direct Detection
- •"Non-standard" DM
- •Recent Developments

Related lectures

Thursday, December 5, 2013

11:00 - 12:30 Principles of Direct Dark Matter Detection 1h30' (One West) Speaker: Dr. Patrick Fox (Fermilab)

(theory, DM models)

Tuesday, December 10, 2013

11:00 - 12:30 Evidence for Dark Matter from the Cosmos 1h30' (One West) Speaker: Dr. Scott Dodelson (Fermilab) (CMB, large Scale Structure, ...)

Tuesday, December 17, 2013

11:00 - 12:30 Direct Dark Matter Detection Experiments 1 1h30' (One West) Speaker: Prof. Jodi Cooley (Southern Methodist University)

Thursday, December 19, 2013

11:00 - 12:30 Direct Dark Matter Detection Experiments 2 1h30' (One West) Speaker: Prof. Jodi Cooley (Southern Methodist University)

(experimental techniques and technologies,...)

The Standard Model (as of July 4th, 2012)

The Standard Model (as of July 4th, 2012)

The Standard Model (as of July 4th, 2012)

27% of universe energy/matter is a new type of (non-baryonic) matter
68% is a new type of energy

(cosmological constant)

•SM is 5%

Evidence for Dark Matter

Coma Cluster

90% of the matter in the cluster doesn't shine

Evidence for Dark Matter (there)

Coma Cluster

90% of the matter in the cluster doesn't shine

Evidence for Dark Matter

For large radii:
$$\frac{v^2}{r} = \frac{G_N M}{r^2}$$

Something invisible is holding stars in orbit

Evidence for Dark Matter (here and there)

For large radii:
$$\frac{v^2}{r} = \frac{G_N M}{r^2}$$

Something invisible is holding stars in orbit

Evidence for Dark Matter (here and there)

For large radii:
$$\frac{v^2}{r} = \frac{G_N M}{r^2}$$

Something invisible is holding stars in orbit

Evidence for Dark Matter

Hot plasma of hydrogen atoms and photons

Evidence for Dark Matter (everywhere)

Hot plasma of hydrogen atoms and photons

Recap on DM's (gross) properties

- •DM makes up 27% of the universe
- •Gravitates like ordinary matter, but is non-baryonic
- •Is dark i.e. neutral under SM (not coloured, or charged)
- Does not interact much with itself $\frac{\sigma_{\chi\chi}}{m} \lesssim 3 \,\mathrm{GeV}^{-3}$
- •Does not couple to massless particle
- •Was not relativistic at time of CMB
- Is long lived

Recap on DM's (gross) properties

- •DM makes up 27% of the universe
- •Gravitates like ordinary matter, but is non-baryonic
- •Is dark i.e. neutral under SM (not coloured, or charged)
- •Does not interact much with itself $\frac{\sigma_{\chi\chi}}{m} \lesssim 3 \,\mathrm{GeV}^{-3}$
- •Does not couple to massless particle
- •Was not relativistic at time of CMB
- •Is long lived

No such particle exists in the SM

Evidence for DM locally?

Evidence for DM locally?

Evidence for DM locally?

So far all probes have been gravitational in nature

What about other interactions?

Thursday, 5 December 13

DM as a thermal relic

If there are DM-SM couplings leading to annihilation/ production, DM will be produced in the hot early universe

$$T \gg m_{\chi}: n_{\chi}^{eq} \sim T^3 \qquad \qquad \chi \chi \leftrightarrow ff$$

$$T \lesssim m_{\chi}: \ n_{\chi}^{eq} = g \left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-m_{\chi}/T} \qquad \chi\chi \to f\bar{f}$$

Universe is expanding while this is happening Need to solve Boltzmann equation

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left(n_{\chi}^2 - n_{eq}^2 \right)$$
$$H = \frac{\dot{a}}{a} \sim \frac{T^2}{M_{pl}}$$

Some examples

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left(n_{\chi}^2 - n_{eq}^2 \right)$$

 $\langle \sigma v \rangle = const$

Freeze out occurs when

$$\left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-m_{\chi}/T} \sim \frac{T_f^2}{M_{pl}\langle\sigma v\rangle}$$

Numerical solution show x=20..30

$$\rho_c = \frac{3H^2}{8\pi G_N} = 8 \times 10^{-47} h^2 \text{GeV}^{-4}$$

$$\Omega_{\chi} = \frac{m_{\chi} n_0}{\rho_c} \sim \frac{T_0^3}{\rho_c} \frac{x}{M_{pl} \langle \sigma v \rangle}$$

Some examples

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left(n_{\chi}^2 - n_{eq}^2 \right)$$

 $\langle \sigma v \rangle = const$

Freeze out occurs when

$$\left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-m_{\chi}/T} \sim \frac{T_f^2}{M_{pl}\langle\sigma v\rangle}$$

Numerical solution show x=20..30

$$\rho_c = \frac{3H^2}{8\pi G_N} = 8 \times 10^{-47} h^2 \text{GeV}^{-4}$$

$$\Omega h^2 \approx 0.1 \left(\frac{m/T}{20}\right) \left(\frac{g_*}{80}\right)^{-1} \left(\frac{3 \times 10^{-26} \text{cm}^2 \text{s}^{-1}}{\sigma v}\right)$$

- •DM makes up 23% of the universe
- •Gravitates like ordinary matter, but is non-baryonic
- •Is dark i.e. neutral under SM (not coloured, or charged)
- •Does not interact much with itself
- •Does not couple to massless particle
- •Was no relativistic at time of CMB
- Is long lived
- IF DM is a thermal relic:
- •A weak scale annihilation x-sec gives correct abundance •Mass range is $10 \text{ MeV} \lesssim m_\chi \lesssim 70 \text{ TeV}$

- •DM makes up 23% of the universe
- •Gravitates like ordinary matter, but is non-baryonic
- •Is dark i.e. neutral under SM (not coloured, or charged)
- Does not interact much with itself
- •Does not couple to massless particle
- •Was no relativistic at time of CMB
- Is long lived

IF DM is a thermal relic:

•A weak scale annihilation x-sec gives correct abundance •Mass range is $10 \text{ MeV} \lesssim m_{\chi} \lesssim 70 \text{ TeV}$

WIMPs and BSM physics

- •Higgs hierarchy problem "predicts" new states at weak scale with/without SM charge
- •Flavour constraints require high scale (1000 TeV) suppression of FCNC operators
- •"New physics parity"
- •LPOP often has possibility to be a DM WIMP

•WIMPs e.g. SUSY neutralino, KK-mode of UED, techni-baryons, lightest T-odd little Higgs particle, LPOPs....

Dark Matter Direct Detection

(the theorist's perspective)

An exciting time, many experiments

hydrogen 1					10	-			1051						0.00			2 He
1.0079 Rhium 3	beryllium A											1	boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine	4.0026 neon 10
Li	Be												B	C	Ň	Ô	F	Ne
6.941 sodium	9.0122 magnesium												10,811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.190 argon
11	12												13	14	15	16	17	18
Na	Mg												AI	Si	P	S	CI	Ar
22.990	24.305												26,982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	22	vanadium 23	chromium 24	manganese 25	26	27	28	copper 29	2inc 30	gallium 31	germanium 32	arsenic 33	selenium 34	35	36
K	Ca		Se	Ti	V	Cr	Mp	Fo	Co	NI	Cu	Zn	Ga	Go	Ac	So	Br	Kr
n	Ca		30	17.027	V	U	IVIII	ге	00		Cu	211	Ga	Ge	AS	Se	DI	T\1
rubidium	40.078 strontium		44.956 yttrium	2irconium	niobium	51.996 molybdenum	technetium	ruthenium	rhodium	palladium	63,546 silver	cadmium	indium	72.61 tin	antimony	78.96 tellurium	79,904 lodine	83.80 Xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118,71	121.76	127.60	126.90	131.29
caesium	barium	57 70	lutetium 74	hafnium 70	tantalum 72	tungsten	rhenium 75	osmium 70	iridium	platinum 79	gold 70	mercury	thallium 04	lead	bismuth	poionium	astatine	radon
00	50	5/-/0	1	116	-73	14	15	0	11	10	/9	80	-	02	0.5	04	00	00
US	ва	*	LU	HT	Ia	VV	Ke	US	Ir	Ρτ	AU	Hg		PD	BI	PO	At	Rn
132.91	137.33		174.97	178.49 outbodfordform	180.95	183.84 cooborolum	186.21 hobdum	190.23 baselere	192.22 moithacthum	195.08	196.97	200.59	204.38	207.2	208.98	[209]	210	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	269	[268]	[271]	[272]	[277]		289	1			

el anthanida antica	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

An exciting time, many experiments

hydrogen	1		10	101	277				101	10					0.00	107		helium
Ιù.																		ц́о
1.0079																		4.0026
lithium	beryllium	1										[boron	carbon	nitrogen	oxygen	fluorine	neon 10
ı.	De												P	ĉ	Ń	ô	9	NIC
LI	ве												в	L L	IN	U	F	Ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20,190 argon
11	12												13	14	15	16	17	18
Na	Ma												AI	Si	Ρ	S	CI	Ar
22.990	24.305												26,982	28.096	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	35	krypton 36
K	Ca		Se	Ti	Ň	Cr	Min	Eo	Co	NI	Cu	Zn	Ga	Go	Ac	Sa	Dr	Kr
n	Ua		30	11	V	G	IVITI	ге	00	INI	Cu	211	Ga	Ge	AS	Se	DI	N I
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51,996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	cadmium	69,723 Indium	72.61 tin	74.922 antimony	78.96 tellurium	79,904 lodine	xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118,71	121.76	127.60	126.90	131.29
caesium 55	56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thalium 81	lead 82	bismuth 83	poionium 84	astatine 85	radon 86
Co	Do	V	1.1	LIF	To	14/	Do	00	le.	D4	Δ	Lla	TI	Dh	Di	Do	A 4	Dn
US	Da	*	LU	пі	Id	VV	Re	US	II	Рι	Au	пд		PD	DI	PO	Αι	RU
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 unuribium	204.38	207.2 ununguadium	208.98	209	210	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sq	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanida series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]
Aim: to understand everything that XENON100: goog Spintlock pictor Results

Aim: to understand everything that goes into this plot

Recoil rate as a function of recoil

energy

Number of targets in experiment

Depends on how much DM is around...

$$\frac{dR}{dE_R} = \frac{N_T \rho}{m_X} \int_{v_{\min}}^{v_{\max}} d^3 v f(v(t)) \frac{d\sigma |v|}{dE_R}$$

Depends on how much DM is around...

...and how it's moving...

...and how it interacts with nuclei.

$$\frac{d\sigma}{dE_R} = F_N^2(E_R)F_\chi^2(E_R)\frac{m_N}{\mu v^2}\sigma_N$$

Differential cross section

Form factor (DM)

$$\frac{d\sigma}{dE_R} = F_N^2(E_R)F_\chi^2(E_R)\frac{m_N}{\mu v^2}\sigma_N$$

$\frac{d\sigma}{dE_R} = F_N^2(E_R)F_\chi^2(E_R)\frac{m_N}{\mu v^2}\sigma_N$

Cross section

$$\frac{d\sigma}{dE_R} = F_N^2(E_R)F_\chi^2(E_R)\frac{m_N}{\mu v^2}\sigma_N$$

$$\sigma^{\mathrm{SI}} = \frac{[Zf_p + (A - Z)f_n]^2}{f_p^2} \frac{\mu_{\chi N}^2}{\mu_{\chi p}^2} \sigma_p^{\mathrm{SI}}$$

$$\frac{d\sigma}{dE_R} = F_N^2(E_R)F_\chi^2(E_R)\frac{m_N}{\mu v^2}\sigma_N$$

$$\sigma^{\rm SI} = \frac{[Zf_p + (A - Z)f_n]^2}{f_p^2} \frac{\mu_{\chi N}^2}{\mu_{\chi p}^2} \sigma_p^{\rm SI}$$

$$\sigma^{\rm SD}S(E_d) = \frac{4\mu_{\chi N}^2 \pi}{3\mu_{\chi p}^2 a_p^2 (2J+1)} [a_0^2 S_{00}(q) + a_0 a_1 S_{01}(q) + a_1^2 S_{11}(q)] \sigma_p^{\rm SD}$$

Of course, don't actually measure DM recoils

directly

In reality also have to include backgrounds and combine with detector effects

e.g. energy resolution, quench factors, target composition, deadtime etc etc Fundamental basis for superior rejection

Of course, don't actually measure]

Thursday, 5 December 13

Thursday, 5 December 13

Thursday, 5 December 13

Kinematics

Minimum speed DM must have to give recoil energy Er

$$v_{min} = \sqrt{\frac{m_N E_R}{2\mu_{N\chi}^2}}$$

Kinematics

Minimum speed DM must have to give recoil energy Er

$$v_{min} = \sqrt{\frac{m_N E_R}{2\mu_{N\chi}^2}}$$

Nuclear Physics

H-exchange $\lambda S^2 |h|^2$

$$\sigma_p \sim \frac{\lambda^2 v^2}{16\pi m_h^4} \left| \langle p | \sum y_q \bar{q}q | r \rangle \right|^2 \frac{m_p^2}{(m_\chi + m_p)^2} \approx \lambda^2 \left(\frac{100 \text{ GeV}}{m_\chi} \right)^2 \times 10^{-43} \text{ cm}^2$$

Annual Modulation Another Way:

DAMA uses this to eliminate background, other expts. can look at modulation once they acquire enough data

Annual Modulation Another Way:

DAMA uses this to eliminate background, other expts. can look at modulation once they acquire enough data

In galactic frame:

$$f(v) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-v^2/v_0^2}$$

 $v_E \approx 227 + 14.4 \cos\left[2\pi \left(\frac{t-t_0}{T}\right)\right]$

In Earth's frame:

$$f(\vec{v}, \vec{v}_E) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-(\vec{v} + \vec{v}_E)^2/v_0^2}$$

In galactic frame: $f(v) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-v^2/v_0^2}$

 $v_E \approx 227 + 14.4 \cos\left[2\pi \left(\frac{t-t_0}{T}\right)\right]$

In Earth's frame:

$$f(\vec{v}, \vec{v}_E) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-(\vec{v} + \vec{v}_E)^2/v_0^2}$$

Does annual modulation = discovery of DM?

Does annual modulation = discovery of DM?

Many things modulate on a year timescale:

Does annual modulation = discovery of DM?

Many things modulate on a year timescale: •temperature
Many things modulate on a year timescale: •temperature •water loading

Many things modulate on a year timescale: •temperature •water loading •radon abundance

- Many things modulate on a year timescale:
- •temperature
- •water loading
- •radon abundance
- •ice-cream sales....

Many things modulate on a year timescale: •temperature •water loading •radon abundance •ice-cream sales....

But, very few line up year-on-year with June 2nd

DM models pre-DAMA

DM models pre-DAMA

DM models pre-DAMA

- •Low mass dark matter with channelling, M~10 GeV
- Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- •Low mass dark matter with channelling, M~10 GeV
- •Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- •Low mass dark matter with channelling, M~10 GeV
- Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- •Low mass dark matter with channelling, M~10 GeV
- Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- •Low mass dark matter with channelling, M~10 GeV
- Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- •Low mass dark matter with channelling, M~10 GeV
- •Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

DM: a phenomenologist's playground

Explore the landscape of possible ways DM can interact with the SM

Experiments originally designed for a ~100 GeV SUSY WIMP, but there are many more possibilities

Thankfully many experiments and clever experimentalists

Motivated by fact that $\Omega_{DM} \sim 5 \Omega_b$ If baryon and DM abundance related then expect DM to be (5-10) x proton mass Also, hard for direct detection because of thresholds, backgrounds, etc (ask Jodi \odot)

Inelastic Dark Matter (iDM)

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2 \mu_{N\chi}^2 m_{\chi}} \int_{\boldsymbol{v_{min}}}^{\boldsymbol{v_{max}}} d^3 \vec{v} \frac{f(\vec{v}, \vec{v}_E)}{v} \sigma_N F^2(E_R)$$

$$v_{min} = \sqrt{\frac{1}{2m_N E_R}} \left(\frac{m_N E_R}{\mu_{N\chi}} + \delta\right)$$

$$m_{\chi} - m_{\chi'} = \delta \sim 100 \,\mathrm{keV}$$

- •Requires "large" momentum exchange to upscatter
- •Favours high velocity tail of MB distribution
- Increased modulation
- •Prefers heavy targets e.g. iodine, xenon, tungsten,..
- •Recoil spectrum has a peak

All of the above helped to make DAMA consistent with CDMS, predicts events at other heavy element detectors

Inelastic Dark Matter (iDM)

$$m_{\chi} - m_{\chi'} = \delta \sim 100 \,\mathrm{keV}$$

- •Requires "large" momentum exchange to upscatter
- •Favours high velocity tail of MB distribution
- Increased modulation
- Prefers heavy targets e.g. iodine, xenon, tungsten,..
- •Recoil spectrum has a peak

All of the above helped to make DAMA consistent with CDMS, predicts events at other heavy element detectors

Exothermic DM (exoDM)

X X SM SM

$$m_{\chi} - m_{\chi'} = \delta \sim -10 \,\mathrm{keV}$$

[Graham, Harnik, Rajendran, Saraswat]

$$v_{\min} = \frac{1}{\sqrt{2m_N E_R}} \left| \frac{m_N E_R}{\mu_{N\chi}} + \delta \right|$$

Can deposit energy even at zero speed
Decreased (but still some) modulation
Prefers light targets
Recoil spectrum has a peak

e/i/exo-DM

Form Factor DM [Chang, Weiner, Pierce and Feldstein, Fitzpatrick, Katz]

$$\frac{dR}{dE_R} = \frac{N_T \, m_N \, \rho_\chi}{2 \, \mu_{N\chi}^2 \, m_\chi} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \, \frac{f(\vec{v}, \vec{v}_E)}{v} \, \sigma_N \, F^2(E_R)$$

DM has a form factor, dipole coupling to light gauge boson

- •Form factors suppress certain ranges of recoil energy
- •Works best with SD couplings, or non-standard velocity distributions e.g. via Lactea
- Although suppresses events at other detectors still expect some signal
- •Peak in spectrum at non-zero recoil energy

Form Factor DM [Chang, Weiner, Pierce and Feldstein, Fitzpatrick, Katz]

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2 \,\mu_{N\chi}^2 m_{\chi}} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \, \frac{f(\vec{v}, \vec{v}_E)}{v} \, \sigma_N \mathcal{F}^2(E_R)$$

DM has a form factor, dipole coupling to light gauge boson

- •Form factors suppress certain ranges of recoil energy
- •Works best with SD couplings, or non-standard velocity distributions e.g. via Lactea
- •Although suppresses events at other detectors still expect some signal
- •Peak in spectrum at non-zero recoil energy

A moment with the photon

Although DM is electrically neutral it can have higher electromagnetic moments e.g. EDM, MDM, quadropoles, anapole, charge radius,...

DM couples to nucleus through photon exchange

Leads to interesting momentum dependence e.g.

$$\frac{d\sigma_{EDM}}{dE_R} = \frac{1}{4\pi} \mathsf{d}_{\chi}^2 Z^2 e^2 \frac{(S+1)}{3S} \frac{1}{v_r^2} \frac{1}{E_R} |G_E(\boldsymbol{q}^2)|^2$$

Typically assume fn~fp

But different elements have different ratios of p/n Can remove some of the strongest constraints if

$$\frac{f_n}{f_p} \approx -0.7$$

Sospin dependent DM [Kurylov and Kamionkowski; Feng and Kumar]

$$\sigma^{\mathrm{SI}} = \frac{[Zf_p + (A - Z)f_n]^2}{f_p^2} \frac{\mu_{\chi N}^2}{\mu_{\chi p}^2} \sigma_p^{\mathrm{SI}}$$

Typically assume fn~fp

But different elements have different ratios of p/n Can remove some of the strongest constraints if

$$\frac{f_n}{f_p} \approx -0.7$$

Resonant Dark Matter (rDM) [Bai and PJF]

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2 \mu_{N\chi}^2 m_{\chi}} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \frac{f(\vec{v}, \vec{v}_E)}{v} \sigma_N F^2(E_R)$$

- Cross section is velocity dependent
- •In particular the velocity dependence is "resonant"
- Picks out small range of velocities
- Increases modulation
- •In our particular model realisation scattering is highly element dependent

Resonant Dark Matter (rDM) [Bai and PJF]

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2 \mu_{N\chi}^2 m_{\chi}} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \frac{f(\vec{v}, \vec{v}_E)}{v} \sigma_N F^2(E_R)$$

- Cross section is velocity dependent
- •In particular the velocity dependence is "resonant"
- Picks out small range of velocities
- Increases modulation
- •In our particular model realisation scattering is highly element dependent

The list goes on

Luminous dark matter
Magnetic iDM
Rayleigh Dark Matter

[Feldstein et al.]

[Weiner and Yavin]

[Weiner and Yavin]

The list goes on

Luminous dark matter
Magnetic iDM
Rayleigh Dark Matter

[Feldstein et al.]

[Weiner and Yavin]

[Weiner and Yavin]

The list goes on

Luminous dark matter
Magnetic iDM
Rayleigh Dark Matter

[Feldstein et al.]

[Weiner and Yavin]

[Weiner and Yavin]

XENON100: New Spin-Independent Results

How low can we go?

Billard, Figueroa-Feliciano, Strigari

Thursday, 5 December 13

Winds, streams and flows

Local abundance and velocity distribution are inputs into the interpretation of direct detection experiments

<u>Only</u> way to measure these things is through direct detection experiments [PJF, Kribs, Tait]

 $f_1(v_{\min}(E_R)) = -\frac{4\mu^2 E_R^2}{m_N^2 E_R^2 - \mu^2 \delta^2} \frac{1}{\mathcal{N}\sigma_0(v_{\min}(E_R)) F_\chi^2(E_R)} \left(\frac{d\mathcal{R}}{dE_R} - \mathcal{R}\frac{1}{F_\chi^2(E_R)} \frac{dF_\chi^2(E_R)}{dE_R}\right)$

f-condition: $f(v) \ge 0$

(Deconvoluted) rate is a monotonically decreasing function, or there is non-standard particle physics e.g. inelastic or a increasing DM form factor Local abundance and velocity distribution are inputs into the interpretation of direct detection experiments

<u>Only</u> way to measure these things is through direct detection experiments [PJF, Kribs, Tait]

$$f_{1}(v_{\min}(E_{R})) = -\frac{4\mu^{2}E_{R}^{2}}{m_{N}^{2}E_{R}^{2} - \mu^{2}\delta^{2}} \frac{1}{\mathcal{N}\sigma_{0}(v_{\min}(E_{R}))F_{\chi}^{2}(E_{R})} \left(\frac{d\mathcal{R}}{dE_{R}} - \mathcal{R}\frac{1}{F_{\chi}^{2}(E_{R})}\frac{dF_{\chi}^{2}(E_{R})}{dE_{R}}\right)$$

$$f_{1}(v) = \int d\Omega f(\vec{v}).$$

f-condition: $f(v) \ge 0$

(Deconvoluted) rate is a monotonically decreasing function, or there is non-standard particle physics e.g. inelastic or a increasing DM form factor Local abundance and velocity distribution are inputs into the interpretation of direct detection experiments

<u>Only</u> way to measure these things is through direct detection experiments

$$f_{1}(v_{\min}(E_{R})) = -\frac{4\mu^{2}E_{R}^{2}}{m_{N}^{2}E_{R}^{2} - \mu^{2}\delta^{2}} \frac{1}{\mathcal{N}\sigma_{0}(v_{\min}(E_{R}))F_{\chi}^{2}(E_{R})} \left(\frac{d\mathcal{R}}{dE_{R}} - \mathcal{R}\frac{1}{F_{\chi}^{2}(E_{R})}\frac{dF_{\chi}^{2}(E_{R})}{dE_{R}}\right)$$

$$f_{1}(v) = \int d\Omega f(\vec{v}). \qquad \mathcal{R} \equiv \frac{1}{F_{N}^{2}(E_{R})}\frac{dR}{dE_{R}}$$

f-condition: $f(v) \ge 0$

(Deconvoluted) rate is a monotonically decreasing function, or there is non-standard particle physics e.g. inelastic or a increasing DM form factor

Thursday, 5 December 13
Two experiments allow us to test particle physics independent of astrophysics

- I) Make hypothesis about DM e.g. elastically scattering DM with mass 100 GeV and x-sec 10⁻⁴⁰ cm²
- 2) Use experiment A to extract astrophysics i.e. rho x f(v)
 3) Use these extracted astrophysics properties to predict result at experiment B
- 4) Compare to B's measurement/bound
- 5) Rule in our out each particle physics hypothesis

Doesn't allow extraction of "unique" x-sec, mass Need relatively large statistics ~10's events Experiments must run over same part of year Other uncertainties (nuclear, atomic etc not addressed)

$$\frac{dR}{dE_R} = \frac{N_T M_T}{2\mu^2} \frac{\rho\sigma}{m_\chi} g(v)$$

$$v_{min} = \sqrt{\frac{M_T E_R}{2\mu^2}}$$

Recoil energy uniquely determines **minimum** DM velocity

$$v_{min} = \sqrt{\frac{M_T E_R}{2\mu^2}}$$

Recoil energy uniquely determines **minimum** DM velocity

$$v_{min} = \sqrt{\frac{M_T E_R}{2\mu^2}}$$

Recoil energy uniquely determines **minimum** DM velocity

Using vmin space

Experiment I \longleftrightarrow Experiment 2 $[E_{low}^{(1)}, E_{low}^{(1)}] \iff [v_{min}^{low}, v_{min}^{high}] \iff [E_{low}^{(2)}, E_{high}^{(2)}]$

$$[\mathbf{E}_{\text{low}}^{(2)}, \mathbf{E}_{\text{high}}^{(2)}] = \frac{\mu_2^2 M_T^{(1)}}{\mu_1^2 M_T^{(2)}} [\mathbf{E}_{\text{low}}^{(1)}, \mathbf{E}_{\text{high}}^{(1)}]$$

Bin	CoGeNT	Ge	Na (Q=0.3)	Si	Ο	Xe
1	[0.5, 0.9]	[2.3, 3.8]	[1.5, 2.5]	[4.5, 7.6]	[5.8, 9.9]	[1.4, 2.3]
	0.90 ± 0.72	0.23 ± 0.18	0.078 ± 0.062	0.035 ± 0.028	0.011 ± 0.009	0.72 ± 0.58
2	[0.9, 1.5]	[3.8, 6.1]	[2.5, 4.0]	[7.6, 11.9]	[9.9, 15.6]	[2.3, 3.7]
	0.37 ± 0.55	0.1 ± 0.149	0.035 ± 0.052	0.015 ± 0.023	0.005 ± 0.008	0.31 ± 0.46
3	[1.5, 2.3]	[6.1, 8.9]	[4.0, 5.8]	[11.9, 17.5]	[15.6, 22.8]	[3.7, 5.4]
	0.48 ± 0.22	0.136 ± 0.063	0.049 ± 0.022	0.021 ± 0.01	0.007 ± 0.003	0.41 ± 0.19
4	[2.3, 3.1]	[8.9,11.6]	[5.8, 7.6]	[17.5, 22.8]	[22.8, 29.8]	[5.4,7]
	0.27 ± 0.23	0.08 ± 0.068	0.029 ± 0.025	0.013 ± 0.011	0.004 ± 0.004	0.23 ± 0.2

Using vmin space

$$N_T = \kappa N_A m_p / M_T$$

Solve for g(v)

$$g(v_{min}) = \frac{2m_{\chi}\mu^2}{N_A\kappa m_p \rho \sigma(E_R)} \frac{dR_1}{dE_1}$$

$$\frac{dR_1}{dE_1} \iff g(v_{min}) \iff \frac{dR_2}{dE_2}$$

The master formula (SI):

 $C_T^{(i)} = \kappa^{(i)} \left(f_p \, Z^{(i)} + f_n \left(A^{(i)} - Z^{(i)} \right) \right)^2$

$$\frac{dR_2}{dE_R} \left(E_2 \right) = \frac{C_T^{(2)}}{C_T^{(1)}} \frac{F_2^2(E_2)}{F_1^2 \left(\frac{\mu_1^2 M_T^{(2)}}{\mu_2^2 M_T^{(1)}} E_2 \right)} \frac{dR_1}{dE_R} \left(\frac{\mu_1^2 M_T^{(2)}}{\mu_2^2 M_T^{(1)}} E_2 \right)$$

CoGeNT and XENONI0

Thursday, 5 December 13

A more direct comparison of data than x-sec--m plots Easy to derive from data Ultimately allows measurement of g(v) Consistency of g(v) determines allowed DM params

Conclusions

- •DM is definitely out there
- Many possibilities for what it is
- Searching on many fronts
- •VERY exciting times
- •Did not have time to talk about MANY things

Conclusions

- •DM is definitely out there
- Many possibilities for what it is
- Searching on many fronts
- •VERY exciting times
- •Did not have time to talk about MANY things

"Stupidity is coming to a conclusion"