Project X Kaon Experiments

Douglas Bryman University of British Columbia

Rare Decays in the LHC Era

New Physics found at LHC

⇒ New particles with unknown flavor- and CP-violating couplings

Precision flavor-physics experiments needed to help sort out the flavor- and CP-violating couplings of the NP.

New Physics NOT found at LHC

Precision flavor-physics experiments needed -> sensitive to NP at mass scales beyond the reach of the LHC (through virtual effects).

1 μ -e Conversion, $\pi \to ev$

 $2 K^+ \to \pi^+ \nu \overline{\nu}, K_L^0 \to \pi^0 \nu \overline{\nu}$

3 $b \rightarrow s\gamma$, other rare decays

 $K^+ \to \pi^+ \nu \overline{\nu}$ and $K_L^0 \to \pi^0 \nu \overline{\nu}$ have

special status because of their small

SM uncertainties and large NP reach.

 $\mu - e$ Conversion and $K^+ \to \pi^+ \nu \overline{\nu}$ are immediate priorities.

- * Huge gains in sensitivity are experimentally accessible.
- * Smooth transitions to the Day-1 Project-X Intensity Frontier program.

Rare K Physics at Project X

```
K^+ \to \pi^+ \nu \bar{\nu} (Wide range of New Physics accessible.)
K_I^0 \to \pi^0 \nu \bar{\nu} (New Physics including pure CPV effects.)
K^+ \to \pi^0 \mu^+ \nu (Transverse Polarization -T violation)
K^+ \rightarrow e^+ v / K^+ \rightarrow \mu^+ v (Universality, LFV, Pseudoscalars...)
K^+ \rightarrow \mu^+ \nu_{\scriptscriptstyle H} (Heavy neutrinos)
K_I^0 \to \pi^0 ee / \pi^0 \mu\mu (CP Violation)
K_I^0, K^+ \to LFV \ e.g. \ K_I^0 \to \mu e
K<sup>0</sup> Interferometry (Plank scale physics)
K \rightarrow \pi l \nu ... (Universality, Chiral PT)
```

$K \rightarrow \pi \nu \nu$: History and *Prospects*

Special Features of Measuring $K^+ \rightarrow \pi^+ \nu \nu$

$$B_{SM}(K^+ \to \pi^+ \nu \overline{\nu}) = (8.5 \pm 0.7) \times 10^{-11}$$

Experimentally weak signature with background processes exceeding signal by >10¹⁰

- Determine everything possible about the K^+ and π^+
 - * π^+/μ^+ particle ID better than $10^6 \ (\pi^+ \rightarrow \mu^+ \rightarrow e^+)$
- Eliminate events with extra charged particles or *photons*
 - * π^0 inefficiency < 10^{-6}
- Suppress backgrounds well below the expected signal (S/N~10)
 - * Predict backgrounds from data: dual independent cuts
 - * Use "Blind analysis" techniques
 - * Test predictions with outside-the-signal-region measurements
- Evaluate candidate events with S/N function

BNL 787/E949

Measurement of

$$K^+ \rightarrow \pi^+ \nu \nu$$

BNL E949: 3nd generation $K^+ \to \pi^+ \nu \bar{\nu}$ Experiment

500 MHz digitizers

- Measure everything possible
- ▶ 710 MeV/c K⁺ beam
- Stop K⁺ in scintillating fiber target
- Wait at least 2 ns for K⁺ decay (delayed coincidence)
- Measure π⁺ momentum in drift chamber
- Measure π⁺ range and energy in target and range stack (RS)
- ▶ Stop π^+ in range stack
- ▶ Observe $\pi^+ \to \mu^+ \to e^+$ in range stack
- ▶ Veto photons, charged tracks

Observation of $K^+ \to \pi^+ \nu \bar{\nu}$ Decay at BNL

E787/E949: 7 events observed

$$B(K^+ \to \pi^+ \nu \overline{\nu}) = 1.73^{+1.15}_{-1.05} x 10^{-10}$$

Standard Model:

$$B(K^+ \to \pi^+ \nu \bar{\nu}) = (0.85 \pm 0.07) \times 10^{-10}$$

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at CERN CERN NA-62 first generation decay-in-flight experiment.

- Builds on NA-31/NA-48
- Un-separated GHz beam
- Aim: 40-50 events/yr at SM
- Under construction; start >2013

 $K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$ at J-PARC KOTO: 2nd try with ~same setup as KEK (< 2.6 x 10⁻⁸)

FIG. 1: Cross section of the E391a detector. K_L^0 's enter from the left side.

- Improved J-PARC Beam line
- (Eventually) higher power
- Aim: 2.8 events (S/B~1) at SM
- Under construction; start >2011

Fermilab Project X

$K^+ \to \pi^+ \nu \overline{\nu}$ at Project X

340 events/year

Incremental Improvements

- 450 MeV/c K stopping rate x10 with comparable instantaneous rate as E949
- Larger solid angle –
 Acceptance x 10
- Finer segmentation, improved resolutions -

Reduced backgrounds

• Overall >250 x sensitivity

Improvement Factors relative to BNL:

Detector Acceptance $11.3 \pm_{2.3}^{3.3}$

Stopped K per year 24

Comparable or lower rates then in E949, despite much higher yield.

The Big Challenge: $K_L^0 \to \pi^0 \nu \overline{\nu}$

- B($K_L \rightarrow \pi^0 vv$) ~ 2.8 ×10⁻¹¹ Need huge flux of K's -> high rates
- Weak neutral particle kinematic signature
 2 particles missing
- Backgrounds with π^0 up to 10^9 times larger Principal problem: $K_1 \rightarrow \pi^0 \pi^0$
- Veto inefficiency on extra particles must be ≤10⁻⁴
- Neutrons dominate the beam
 - make π^0 off residual gas requires high vacuum
 - halo must be very small
 - hermeticity may require photon veto in the beam
- Need convincing measurement of background

Project X : $K_L^0 \to \pi^0 \nu \bar{\nu}$ Experiment Concept

a la KOPIO

- Use TOF to work in the K_L⁰ c.m. system
- Identify and eliminate main 2-body background $K_L^0 \to \pi^0 \pi^0$
- Reconstruct $\pi^0 \to \gamma \gamma$ decays with pointing calorimeter
- \bullet 4 π solid angle photon and charged particle vetos

$$K_L^0 \to \pi^0 \nu \overline{\nu}$$
 At Project X:

Ideal time structure for TOF-based experiment.

- High intensity allows small beam dimensions
- Symmetrical beam, detector; geometric acceptance maximized
- 2-D beam kinematic constraint increases S/B
- Upstream backgrounds, backgrounds in the fiducial volume reduced
- Same micro-bunch event spoilage reduced
- Random vetos reduced due to high duty factor
- Beam veto may be unnecessary
- Neutron rates high could be problematic

Project X Kaon Hall

Common target for

 $K^+ \to \pi^+ \nu \overline{\nu}$ and $K_L^0 \to \pi^0 \nu \overline{\nu}$ Experiments

$K \rightarrow \pi \nu \overline{\nu}$ Prospects

$$K^+ \to \pi^+ \nu \overline{\nu}$$

$$K_L^0 \to \pi^0 \nu \overline{\nu}$$

Now:
$$B(K^+ \to \pi^+ \nu \overline{\nu}) = 1.73^{+1.15}_{-1.05} x 10^{-10}$$

(7 events)

Now: $B(K_L^0 \to \pi^0 \nu \nu) < 2.6 \times 10^{-8}$

Future: Sensitivity at SM $(0.85 \pm 0.07)x10^{-10}$ *Future*: Sensitivity at SM $3x10^{-11}$

Goals	NA62 CERN	FNAL MI	Proj.X
Events/ yr	40	100	340
S/N	5	5	5
Precision	10%	5%	3%

Goals	KOTO *	Proj.X
	J-PARC	
Events/yr	~1	"200"
S/N	~1	5-10
Precision		5%

^{*} J-PARC plans a phase II to reach higher sensitivity. 16

Summary: K Physics at Project X

An unprecedented opportunity to find new physics with Rare Kaon Decays

- $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L^0 \to \pi^0 \nu \bar{\nu}$ can be measured with high precision.

 Ultimate experiments can be done covering all accessible non-SM physics.

 Complementary to LHC for studying flavor interactions at high mass scales.
- Many rare Kaon processes can be accessed to explore

New CP and T violation,

Universality,

Lepton flavor violation,

Searches for scalar and pseudoscalar interactions, exotics