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Two REBCO applications of interest for MC community

REBCO Insert Solenoids

for high field magnet applications
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Lombardo, E. Barzi, D. Turrioni, A.V. Zlobin
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REBCO Helical Solenoids
for high field section of HCC
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Winding REBCO coils
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Small REBCO Insert Coil Overview

Conductor

SuperPower SCS4050-i

Spool ID

Ic (A) Average @77K,0T
lc (A) Minimum @77K,0T
Ic Standard Deviation
Turn to Turn Insulation
Coil Geometry

Coil ID

Coil OD

Conductor Thickness
Conductor + Insulation
Packing Factor

Turns per Single Coil
Overall Conductor Length
Coil Resistance @ 300K
Coil Inductance @1kHz

20100306-1e
113A

107A

2.7%

Spiral Wrapped Kapton
Double Pancake
19 mm

62 mm

0.1 mm

0.2 mm

50%

108

27.8m

2.87 Ohm
1.5mH
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After completion of practice winding runs, a full scale YBCO coil
was wound and assembled. Details are on shown on the left.




Accounting for anisotropy in Liquid Nitrogen, Self Field Test

Expected coil current ranges were far below the nominal critical current
measured on short samples due to self field impacting perpendicularly
120 to the ab plane of the tape.

Typical in-field behavior @ 77K
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Magnetic Field Distribution with YBCO Insert + bkgr Field
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’- Ic(B,theta)/Ic(77K,0T) vs B(T)
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V. Lombardo, A. Bartalesi, E. Barzi, M. Lamm, D. Turrioni and A.V. Zlobin. “Modular Test Facility

Ic(B,theta)/Ic(77K,0T) vs B(T)

Angular measurements for SP YBCO

FNAL data are shown for SCS4050 Superpower

Tape, for different magnetic field angles of

incidence (and temperature).
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Ic(B,®) parameterization for SSL calculation at 4.2K
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Ic(4.2K,B,theta)/Ic(77K,0T)

i

|.(B,©) parameterization for SSL calculation at 4.2K
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V. Lombardo, E. Barzi, G. Norcia, M. Lamm, D. Turrioni, T. Van Raes and A. V. Zlobin. “Study of HTS Insert Coils for high field Solenoids” —
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Transactions of the Cryogenic Engineering Conference —

V. Lombardo - “An Ic(B,8) parameterization for YBa,Cu;0,_s CC Tapes” — FERMILAB-TM-2461-TD

More HF data available at

D. Turrioni, E. Barzi, M. J. Lamm, R. Yamada, A. V. Zlobin, A. Kikuchi, “Study of HTS Wires at High Magnetic Fields”
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Insert Coil performance estimation at 4.2K
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Magnetic Field Distribution with and without Insert

Peak Field on the conductor:

18.3T @ 498A

Peak Central Field
Bz(0): 17 T @ 498A
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Test results at 4.2K in 13.5T background field

Electrical Field (microV/cm)

Bz(0) - Hall Probe (T)
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Scale-up work

Conductor SuperPower SCS4050-i

Turn to Turn Insulation Spiral Wrapped Kapton

Coil Geometry Double Pancake — no inner splice
Coil ID 19 mm
Coil OD 62 mm
Conductor Thickness 0.1 mm

Conductor + Insulation 0.2 mm

Thickness
Packing Factor 50%
Turns per Single Coil 108
3.5
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Final Assembly of 4 Double Pancake Coils on the Test Probe

Probe Development
for Insert Coil Test

* Modular and Flexible to different coil geometries and number of coils
* Allow the insertion of a Hall probe to measure axial field

* Allow up to 2kA, while minimizing the room allocated to leads for max coil OD

V. Lombardo, A. Bartalesi, E. Barzi, M. Lamm, D. Turrioni and A.V. Zlobin. “Modular Test Facility

. for HTS Insert Coils” — IEEE Trans. Appl. Sup., V. 20, No. 3, p. 587 (2010)
2= Fermilab 17



120

4 coils Liquid Nitrogen test — full coil Ic

110 Scaled on the weakest between the two edge coils
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Current (A)

Radial Field vs R @ z=16mm @ Icoil=32A
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4coils Liquid Helium Test

Magretic flux density, norm [T]

REBCO Insert Coil

Exter

— YBCO Insert + Ekg Fidd
— Bkg Field Mo Insert
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MC Helical Cooling Channel (HCC) Concept

* ltincludes an helical magnet system combined with RF
cavities to recover the beam energy loss in an absorber.

*  The coils would follow the helical beam orbit generating
solenoidal, helical dipole and helical quadrupole fields

*  Studied to be multi-sectional.
*  Wide range of fields, helical periods and apertures

e NbTi, NbsSn and HTS in final stage
* Incorporating RF is a challenge.

Parameter Section

1st 2nd 3rd 4th
Total length m 50 40 30 40
Period mm 1000 800 600 400
Orbit radius mm 159 127 95 64
Solenoidal field B, T | -695 -869 -116  -173
Helical dipole B, | T | 1.62 203 271 | 4.006
Helical gradient | T/m -0.7 | -1.1 2 4.5

K. Yonehara, S. Kahn, R. Johnson et al.
N. Andreev et al, “Model NbTi Helical

e . Muons, Solenoid Fabrication and Test Results”
3F Fermilab i Inc. 20
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High Field Section of Helical Cooling Channel

Hybrid models (Nb;Sn+HTS) needs to be investigated to achieve the required field levels for the last HCC section.
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16.475 M. Lopes et al, “Studies of the High-Field Section for a

LOoST Muon Helical Cooling Channel” and “Studies of the High-

22.187 Field Sections for a Muon Helical Cooling Channel with coil
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REBCO Helical Solenoid Short Model

In order to start developing the coil technology, 3 REBCO double pancakes units with dummy cavity
insertions were designed, assembled and tested according to the following parameters.

. ———Outer Splice Table 1: HS Short Models Parameters
: = 10 mm 78 mm 16 mm

Number of Double-pancake Units
(Number of Cavity Insertion)

Parameter Unit
1(0) LN ()} 3@
130 mm ;
Inner Splice Slot Coil ID m 0.10 0.10 0.10
Coil OD m 0.116 0.116 0.116
Number of
Double- turns/co1l 38 58 58
pancake .
/ Unit Predicted L., kA 1.424 1.348 1.375
Maximum Coil
E . T 34 3.7 3.6
Connecting e B 1 Field
Flange v Inductance mH 1.6 74 9.1
Stored energy kI 16 6.7 8.6

A. V. Zlobin et al. “Modeling the high-field section
of a Muon Helical Cooling Channel”

Muons,

2% Fermilab Inc. 22
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REBCO Helical Solenoid Short Model

SS Support _ Ground Outer
Ring Coil Insulation Bandage

Pulleys
Arm Spool1  Spool 2

Tensioner
Winding
Station

Middle . Ground
QOuter Spl
Coil Flange "' SPUC®  sulation 610 Spacer
Support
Structure

1. Coils assembled using commercially available 12mm wide
SuperPower ybco tape. Dry Wound. Kapton insulation. |
2. Coils were wound and unwound several times and thermal . L. -~ Dumuiy
. . ) -3 & Edvities
cycled with no degradation.
3. Non-negligible degradation at inner and outer joints was
seen during coil excitation.

M. Yu et al. “Fabrication and test of short helical
Je - H Moy solenoid model based on ybco tape”
2 Fermilab Winc. y p

Innovation in Research
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Some Considerations on REBCO

REBCO offers interesting opportunities for 20T-50T magnet development.

e Suitable for high field-high stress applications in traditional and more exotic coil geometries.
e |t allows magnet operation at temperatures substantially higher than 4.2K -- if needed by the
application (HF HCC + cavities operated at 30K+)

e Can be wound as is - no reaction needed.

Some topics of interest :

1. Conductor anisotropy needs to be carefully accounted for in magnet design. A framework
for doing that has been presented.

2. Conductor uniformity in terms of J_(B,0) at 4.2K is critical. Clear need to upgrade from a
77K to some sort of 4.2K QC. How do we define a ‘defect free’ conductor for low

temperature, high field applications ?

3. Splice resistance is - in most cases - achieved down to the 50 nQcm? level, nevertheless
some degree of degradation in joints has been seen during magnet operation.

2% Fermilab



Some Considerations on REBCO

4. Quench protection remains substantially more challenging than LTS magnets. Up to 100
um of Cu can be added by manufacturers to commercially available wires. This helps
increasing the stability of the conductor and loosening the requirements on the quench
protection. What is really needed for large scale systems ?

5. All coils wound today rely on single REBCO tapes. Far from ideal solution, but only one
currently available. Mechanically stable high J_ cables are needed to operate this
conductor in large high-field high-inductance accelerator-quality magnets. (Roebel, CORC

--- more on this tomorrow morning)

6. Last, but not least, conductor affordability.

2% Fermilab



