REBCO Coils R&D for Muon Cooling

E. Barzi, G. Gallo, V. Lombardo, A. Rusy, E. Terzini, D. Turrioni, T. Van Raes, A. V. Zlobin M. Yu, M.L Lopez, G. Flanagan, R.P. Johnson

Graduate Students: G. Norcia, A. Bartalesi, A. Cattabiani, P. Vicini

MAP HTS Workshop 2012

May 30-31, 2012

Talk Outline

- 1. REBCO Coils for Muon Cooling Overview
- 2. Small REBCO Insert Test Coils
- 3. REBCO Helical Solenoid Coils
- 4. Considerations and Conclusions

Muon Collider Facility Outline

Two REBCO applications of interest for MC community

for high field magnet applications Max: 21.585 0.18 0.16 20 0.14 18 0.12 0.1 16 0.08 0.06 14 0.04 0.02 12 0 10 -0.02 -0.04 -0.06 -0.08 -0.1 -0.12 -0.14-0.16 -0.18 0.15 Min: 6.398e-9 0 0.05 0.1

REBCO Insert Solenoids

REBCO Helical Solenoids for high field section of HCC

Latest at "Fabrication and test of short helical solenoid model based on YBCO tapes", M. Yu et al.

Latest at "Insert Coil Test for High Field Magnets based on YBCO CC Tapes". V. Lombardo, E. Barzi, D. Turrioni, A.V. Zlobin

🛟 Fermilab

(AVG)

Winding REBCO coils

Small REBCO Insert Coil Overview

Conductor	SuperPower SCS4050-i
Spool ID	20100306-1e
Ic (A) Average @77K,0T	113A
Ic (A) Minimum @77K,0T	107A
Ic Standard Deviation	2.7%
Turn to Turn Insulation	Spiral Wrapped Kapton
Coil Geometry	Double Pancake
Coil ID	19 mm
Coil OD	62 mm
Conductor Thickness	0.1 mm
Conductor + Insulation	0.2 mm
Packing Factor	50%
Turns per Single Coil	108
Overall Conductor Length	27.8m
Coil Resistance @ 300K	2.87 Ohm
Coil Inductance @1kHz	1.5 mH

After completion of practice winding runs, a full scale YBCO coil was wound and assembled. Details are on shown on the left.

Accounting for anisotropy in Liquid Nitrogen, Self Field Test

Magnetic Field Distribution with YBCO Insert + bkgr Field

‡ Fermilab

V. Lombardo, A. Bartalesi, E. Barzi, M. Lamm, D. Turrioni and A.V. Zlobin. *"Modular Test Facility for HTS Insert Coils"* - IEEE Trans. Appl. Sup., V. 20, No. 3, p. 587 (2010)

$$I_{c}(\theta) = \frac{k}{\sqrt{\sin(\theta)^{2} + \frac{\cos(\theta)^{2}}{\varepsilon^{2}}}} + (a\sin(\theta))^{2}$$

$I_c(B,\Theta)$ parameterization for SSL calculation at 4.2K

V. Lombardo, E. Barzi, G. Norcia, M. Lamm, D. Turrioni, T. Van Raes and A. V. Zlobin. "Study of HTS Insert Coils for high field Solenoids" – Transactions of the Cryogenic Engineering Conference –

V. Lombardo - "An Ic(B, ϑ) parameterization for YBa₂Cu₃O_{7- δ} CC Tapes" – FERMILAB-TM-2461-TD

More HF data available at

D. Turrioni, E. Barzi, M. J. Lamm, R. Yamada, A. V. Zlobin, A. Kikuchi, "Study of HTS Wires at High Magnetic Fields"

Insert Coil performance estimation at 4.2K

Magnetic Field Distribution with and without Insert

E. Barzi et al. "Latest on YBCO Small Coil Technology" – LTHFSW 2011

‡ Fermilab

Test results at 4.2K in 13.5T background field

Scale-up work

Conductor	SuperPower SCS4050-i
Turn to Turn Insulation	Spiral Wrapped Kapton
Coil Geometry	Double Pancake – no inner splice
Coil ID	19 mm
Coil OD	62 mm
Conductor Thickness	0.1 mm
Conductor + Insulation Thickness	0.2 mm
Packing Factor	50%
Turns per Single Coil	108

Test of full batch of 7 coils in Liquid Nitrogen

🛟 Fermilab

Final Assembly of 4 Double Pancake Coils on the Test Probe

- Modular and Flexible to different coil geometries and number of coils
- Allow the insertion of a Hall probe to measure axial field
- Allow up to 2kA, while minimizing the room allocated to leads for max coil OD

V. Lombardo, A. Bartalesi, E. Barzi, M. Lamm, D. Turrioni and A.V. Zlobin. *"Modular Test Facility for HTS Insert Coils"* – IEEE Trans. Appl. Sup., V. 20, No. 3, p. 587 (2010)

‡ Fermilab

17

4 coils Liquid Nitrogen test – full coil Ic

4coils Liquid Helium Test

MC Helical Cooling Channel (HCC) Concept

- It includes an helical magnet system combined with RF cavities to recover the beam energy loss in an absorber.
- The coils would follow the helical beam orbit generating solenoidal, helical dipole and helical quadrupole fields
- Studied to be multi-sectional.
- Wide range of fields, helical periods and apertures
- NbTi, Nb₃Sn and <u>HTS in final stage</u>
- Incorporating RF is a challenge.

Parameter		Section				
		1st	2nd	3rd	4th	
Total length		m	50	40	30	40
Period		mm	1000	800	600	400
Orbit radius		mm	159	127	95	64
Solenoidal field	B_z	Т	-6.95	-8.69	-11.6	-17.3
Helical dipole	B_t	Т	1.62	2.03	2.71	4.06
Helical gradient	G	T/m	-0.7	-1.1	-2	-4.5

K. Yonehara, S. Kahn, R. Johnson et al.

N. Andreev et al, *"Model NbTi Helical Solenoid Fabrication and Test Results"*

High Field Section of Helical Cooling Channel

Hybrid models (Nb₃Sn+HTS) needs to be investigated to achieve the required field levels for the last HCC section.

ANSYS NODAL SOLUTION STEP=1 SUB = 1TIME=1 BSUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat =5.052 SMN SMX =22.187 5.052 6.956 8.86 10.764 12.668 14.572 16.475 18.379 20.283 22.187

M. Lopes et al, "Studies of the High-Field Section for a Muon Helical Cooling Channel" and "Studies of the High-Field Sections for a Muon Helical Cooling Channel with coil Separation"

REBCO Helical Solenoid Short Model

In order to start developing the coil technology, 3 REBCO double pancakes units with dummy cavity insertions were designed, assembled and tested according to the following parameters.

Parameter	Unit	Number of Double-pancake Units (Number of Cavity Insertion)			
		1 (0)	3 (0)	3 (2)	
Coil ID	m	0.10	0.10	0.10	
Coil OD	m	0.116	0.116	0.116	
Number of turns/coil		58	58	58	
Predicted I _{quench}	kA	1.424	1.348	1.375	
Maximum Coil B⊥Field	Т	3.4	3.7	3.6	
Inductance	mH	1.6	7.4	9.1	
Stored energy	kJ	1.6	6.7	8.6	

A. V. Zlobin et al. "Modeling the high-field section
of a Muon Helical Cooling Channel"

Table 1: HS Short Models Parameters

REBCO Helical Solenoid Short Model

- 1. Coils assembled using commercially available 12mm wide SuperPower ybco tape. Dry Wound. Kapton insulation.
- 2. Coils were wound and unwound several times and thermal cycled with no degradation.
- 3. Non-negligible degradation at inner and outer joints was seen during coil excitation.

M. Yu et al. *"Fabrication and test of short helical solenoid model based on ybco tape"*

Some Considerations on **REBCO**

REBCO offers interesting opportunities for 20T-50T magnet development.

- Suitable for high field-high stress applications in traditional and more exotic coil geometries.
- It allows magnet operation at temperatures substantially higher than 4.2K -- if needed by the application (HF HCC + cavities operated at 30K+)
- Can be wound as is no reaction needed.

Some topics of interest :

- 1. **Conductor anisotropy** needs to be carefully accounted for in magnet design. A framework for doing that has been presented.
- **2.** Conductor uniformity in terms of $J_c(B,\Theta)$ at <u>4.2K</u> is critical. Clear need to upgrade from a 77K to some sort of **4.2K QC**. How do we define a '*defect free*' conductor for low temperature, high field applications ?
- **3.** Splice resistance is in most cases achieved down to the 50 n Ω cm² level, nevertheless some degree of degradation in joints has been seen during magnet operation.

Fermilab

Some Considerations on **REBCO**

- 4. Quench protection remains substantially more challenging than LTS magnets. Up to 100 μm of Cu can be added by manufacturers to commercially available wires. This helps increasing the stability of the conductor and loosening the requirements on the quench protection. What is really needed for large scale systems ?
- All coils wound today rely on single REBCO tapes. Far from ideal solution, but only one currently available. Mechanically stable high J_e cables are needed to operate this conductor in large high-field high-inductance accelerator-quality magnets. (Roebel, CORC --- more on this tomorrow morning)
- 6. Last, but not least, conductor affordability.