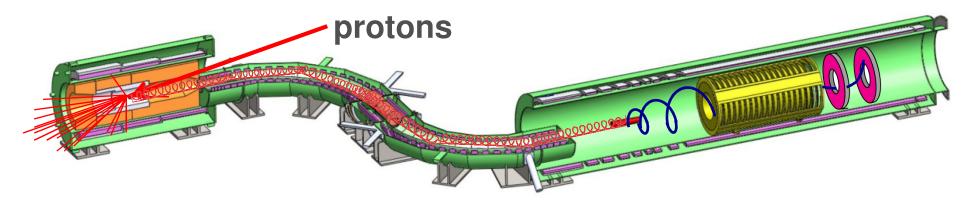


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

The Mu2e Experiment at Fermilab: Experience with OSG Opportunistic

Ray Culbertson
OSG All Hands Meeting 2016 (non-LHC session)
14 Mar 2016


This is a sub-talk

- I'll be giving an overview talk at the plenary on Wednesday
- Today, focus on some more details
 - Lessons learned
 - Requests
 - I'm open to discussions and suggestions
- Right up front, I'd like to thank Ken Herner (our main contact) and all the Fermilab and OSG support staff that made this project possible!
- OSG has enabled Mu2e to meet or exceed all our computing goals, and couldn't have been done without them!!

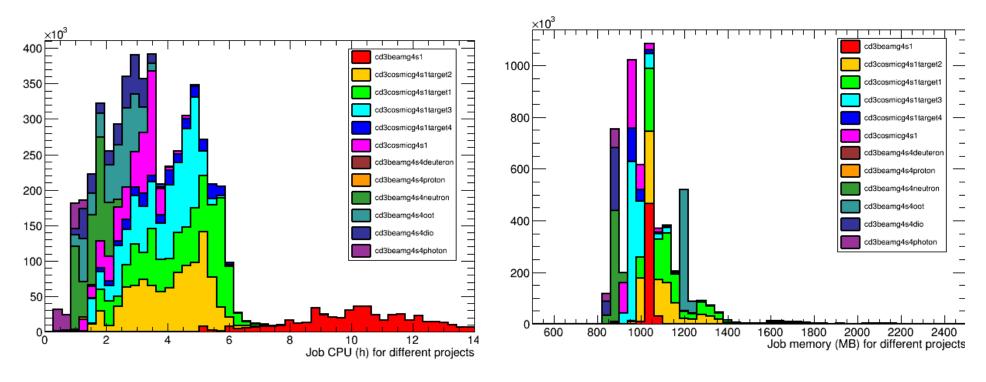
The Mu2e Experiment

- Building at Fermilab, commissioning in 2021
- Searches for very rare conversion of a muon into electron

- Looking for a few 105 MeV electrons in 3 years of running
- Requires extraordinary control of backgrounds, < 1 event
- Which requires lots of simulation!
- In the last year, a big push to prepare for DOE CD-3 review

OSG Solves the Mu2e CD-3 CPU Problem

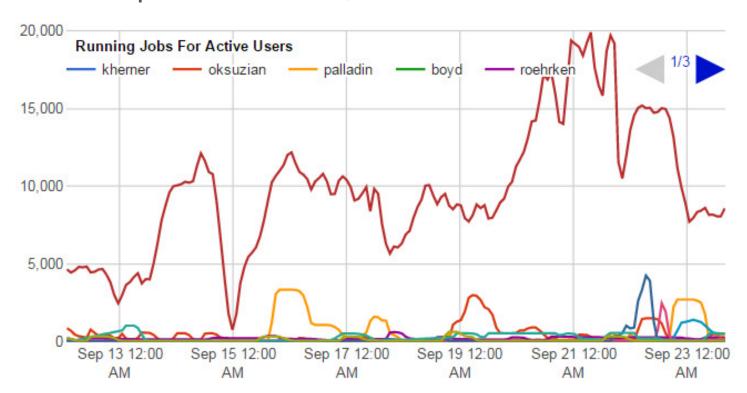
- Commissioning
 - Dec 2014 started commissioning cvmfs
 - Feb 2015 started commissioning OSG
 - Apr 2015 running tests of 5K slots regularly, adding sites
 - Jun 2015 start production
 - Sep 2015 succeed making the baseline checkpoint goal
 - Production almost continuous, and only winding down now
- Met all basic goals (14 Mh) and went on to meet stretch goals!
- 60 Mh (wall) in the last year
- 10 M jobs submitted
- 33 M files (276 TB) uploaded to tape at FNAL
- 75 G events simulated


The Mu2e Simulation Job

- Submit via jobsub (FNAL interface to condor)
- Command file moved to worker node by condor
- FNAL infrastructure packages and Mu2e code are on cvmfs
- Copy in a small configuration file
 - via ifdh (FNAL interface to gridftp and other transport)
- Run the Mu2e simulation executable
- Copy back 5-10 small files (20 MB or less)
 - Also via ifdh
- Input and output to dCache (distributed disk at FNAL)
- Hand-run run scripts to validate job output
- Move to tape and final tape-backed dCache location
 - FTS (Fermilab procedure to upload files)

What Ran on Sites

CPU and memory separated by project



- CPU mostly 2-6h, one job longer, to 16h
- memory 0.8-1.8 GB

What Ran on Sites

Typically running 8K jobs at a time, with large variations,
 ... up to our record, 20K

Lesson #1 – need information!

In the process of running production and uploading files, we found the need to set up 11 monitoring processes

- OSG
 - Monitor each site, mine condor logs (2 ways)
- dCache
 - Response time, space, connections, tape activity by VO
- SAM file catalog
 - Dataset listings, response time
- File Upload
 - Upload area contents by dataset, processing rates
- Plus many scripts for collecting info, debugging
- Some existing monitors are "near-miss" to the info we want, and generally getting closer as time passes

 Fermilab

Lesson #1 – need information!

- Submit probe test job on all sites
 - Test the whole infrastructure chain for Mu2e needs
- Submit twice a day, kill it if it doesn't run in 12 hours
- Summarize all results
 - A "5" is complete success, lower means some step failed

Time	DEDI	MWT2	Nebr	OPPO	Corn	Omah	SU-O	UCSD	UChi	Wisc	Calt	Notr	FNAL	MIT	BNL	Clem	Mich	TTU	Hyak
2016-02-22 06:00	5	5	5	5	0	5	5	5	5	5	5	5	5	0	5	4	5	0	5
2016-02-21 18:00	5	5	5	5	0	5	5	5	5	5	0	5	5	0	5	0	5	0	5
2016-02-21 06:00	5	5	5	5	0	5	5	5	5	5	5	5	5	0	5	0	5	0	5
2016-02-20 18:00	5	5	5	5	0	5	0	5	5	5	5	5	5	0	5	0	5	0	5
2016-02-20 06:00	5	5	5	5	0	5	0	0	5	5	5	5	5	0	5	0	5	0	5
2016-02-19 18:00	5	5	5	5	0	5	5	0	5	5	5	5	5	0	5	0	5	0	5
2016-02-19 06:00	5	5	5	5	5	5	5	0	5	5	5	5	5	0	5	4	5	0	5
2016-02-18 18:00	5	5	5	5	5	5	5	4	5	0	5	5	5	0	5	4	5	0	4
2016-02-18 06:00	5	5	5	5	0	5	0	0	5	5	5	5	5	0	5	0	5	0	5
2016-02-17 18:00	5	5	5	5	0	5	5	0	5	5	5	5	5	0	5	0	5	0	5
2016-02-17 06:00	5	5	5	5	0	5	5	0	5	5	5	5	5	0	5	0	5	0	0
2016-02-16 18:00	5	5	5	5	0	5	5	0	5	5	5	5	5	0	5	0	5	0	5
2016-02-16 06:00	5	5	5	5	0	5	0	0	5	5	0	5	5	0	5	4	5	0	5
2016-02-15 18:00	5	5	5	5	0	5	5	5	5	5	0	5	5	0	5	0	5	0	5

Lesson #2 – small files can create a major problem

- 2-16h CPU job produces 5-10 small files, 3-5 to be uploaded
- While this style was generally agreed to early on, I don't anyone realized how much trouble it could be
- We really made it worse
 - Uploading an individual control file per job could be scripted
 - jobs could be chunked more logically, pipelined
 - Uploaded individual log files could be tarred
 - Split output files for convenience could be redesigned
 - Reducing by x2 would bring it in reasonable range
- The fundamental problem of one 8h jobs producing ~20MB output can't be avoided – it's the physics and detector

Lesson #2 – small files created a major problem

Small files cause problems at every stage

- Waiting for 1 M job control files to upload was the single largest cause of delays
 - The upload system could become overwhelmed, and only crude control of upload priorities
- Gridftp can become overloaded with the number requests
- Gridftp and dCache have significant per-file overhead
- Every "find" in processing takes minutes to hours
- Slow processes require them to be "kept up" adding to maintenance and monitoring/debugging can be painful!
- Production procedures are evolving
- Improved matching procedures to services is underway

Lesson #3 – understanding friction

- Friction is ongoing and requires constant vigilance and maintenance
 - sites may come or go for whatever reasons
 - dCache issues pop up in various forms at any time
 - projects differ and create different issues
- For foreseeable future, always need automated resubmission However,
- Infrastructure failure rates have gone down continuously
- At start they were 10-20%, now almost always under 1%
 - Birthing pains are gone
 - Sites seem more consistent, stable
 - cvmfs errors much more rare
 - Many more alarms, checks, and automatic retries, etc.
 Fermilab

One Year of Servicedesk Tickets

A very rough sorting/analysis of 179 tickets related to Mu2e production in the last year...

- 51 submission infrastructure
 - Jobsub, fifebatch, condor, glideins, monitoring, condor logs
- 37 dCache
- 35 file handling at FNAL (SAM, FTS and other)
- 26 ifdh and gridftp
- 18 CMVFS
 - Many of these are problems at specific OSG sites
- 12 OSG site issues

Scale is 2/week for lab infrastructure, 1/week for OSG sites, plus numerous email threads, conversations

Some Typical Issues local to FNAL

- Fifebatch (condor servers) overloaded or crashed
- "Sandbox"
 - No disk space
 - Cant change ownership
- Monitoring down or incorrect
- Gridftp servers
 - Overloaded or hung
 - rejecting authentication
- dCache
 - Overloaded or hung, not responding
 - Components crashed
 - Missing directory entries

Site Issues I

- Local software
 - uberftp not at latest version triggers knowns bugs
 - /usr/bin/time command not installed (reports memory)
 - eventually we customized it and put on cvmfs
 - pass all signals, memory incorrect by a factor of 4
- Kernels
 - Request SL6, see 99% 2.6 1% 3.x 0.1% 4.x
 - This issue mostly manifested in FNAL "setup" infrastructure
- Optional libraries
 - Some sites do not install X11 display libraries
 - We now provide them on cvmfs and include them in library path
 - Developing graphics-free builds, but would rather it just works

Site Issues II

- Authentication failing
 - By VO or user
 - Hard to differentiate from no slots available and ad mismatch
- CMVFS
 - Not mounted, wrong version
 - Cache not up to date
 - Corrupt, causes seg faults and missing files
- Single–node black holes
 - Often CVMFS errors
 - Hardware errors: seg fault, bus error, input/output error, disk full
- Job restarts (see next)

Lesson #4, Restarts are major factor

	Job	Disconnect	Eviction
	Stats	Prob (%)	Prob(%)
BNL	64556	Θ	Θ
Caltech	758339	3	Θ
Clemson	1371	Θ	3
Cornell	295	16	3
FNAL	383615	1	Θ
Fermigrid	4861	Θ	Θ
Hyak_CE	9319	54	5
MIT	5205	73	Θ
MWT2	203678	1	4
Michigan	95476	Θ	1
Nebraska	462291	44	Θ
NotreDame	282337	16	Θ
0maha	517470	34	Θ
SU-0G	2003389	10	Θ
UCSD	45546	2	Θ
Wisconsin	602861	36	Θ

Counted by condor log status 10/2015-2/2016

Job restart issues and questions

- Overall, 17% of our jobs get disconnected or evicted
- Every day 1000's of jobs are disconnected
- This leads to a long tail in processing any large submissions
- Many cases where we are getting N slots continuously on a site, but also continuously disconnecting at very high rates -30% or more – why?
- I'm told some evictions are reported as disconnects why?
- Sites show a huge variation in this metric, clearly completely different procedures or policies

OK, now some thoughts

I have no significant knowledge of OSG history and ongoing discussions, known roadblocks, etc.

But, under the assumption that you want to hear what users want, I will attempt some detailed feedback

Hopefully, if nothing else, it reinforces existing priorities, or provides ammunition in future negotiations

Thoughts #1 – reliability

Make opportunistic access more reliable

- Guarantee at least 8 h running time before evicting a job
 - Or at least 2 h!?
- This is the single most important request I have!
- Make this uniform on all sites
- Also
 - Label evictions as evictions, and hold as hold
 - Reduce disconnect timeout
 - Debug/reduce any other disconnect issues
- This will virtually eliminate CPU waste and reduce long tails
- Of course, always add sites and open more sites to all VO's!
- Can we get into non-U.S. sites?

Thoughts #2 – transparency

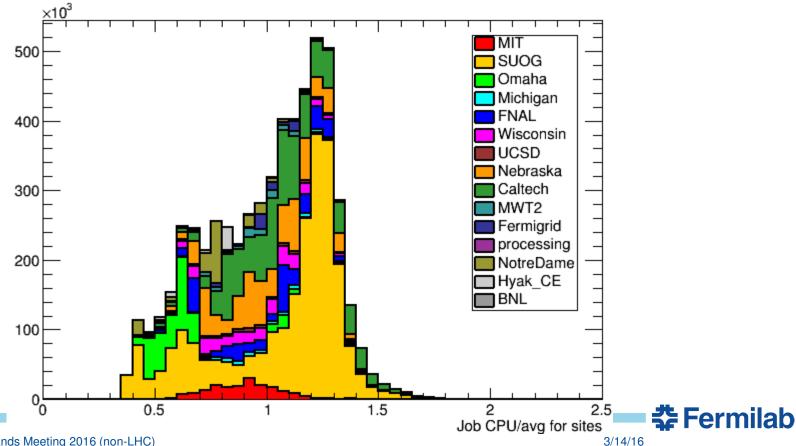
- Announce capabilities in detail
 - Hardware (OS, memory, disk)
 - Slot counts for each
- Announce site policies
 - How quotas and priorities are set
 - How much is open to opportunistic? Any VO limits?
 - When and how are jobs evicted?
- Announce opportunistic availability continuously
 - Ideally slots with their characteristics
 - When our jobs don't land on a site, I can't tell if that's an error, a mismatch, or simply reduced opportunistic slots
- I expect some of this is available now, but why don't I, as a power-user, know about it?

Thoughts #3 – monitoring and debugging

- Access to an example node for commissioning and debugging
- Some access to ongoing problems on all nodes top, tail, Is or return log files of jobs which go over resource limits. Some core files on demand?

Not sure what the following would actually look like

- Monitor cvmfs on each node and blacklist any that show errors
- Mitigate black holes detect, throttle/blacklist, and report nodes which show anomalous job lifetime? On request only...


More uniformity:

- Uniform software
- Uniform, optimal /usr/bin/time command

Thought #3, CPU power normalization

- CPU variation between jobs in a project is order 2%
- CPU/(avg CPU for project) shows factor 3 variation
- Without normalization, makes planning harder...

Thank you for these resources!

- The OSG resources were critical to the Mu2e success for CD-3 review and will be critical for our future efforts
- Overall, a huge success using a fantastic resource!
- Effort was very manageable
 - Order 1 FTE-month to get going on 10-15 sites
 - Maintenance is order 5-10% FTE

The Mu2e experiment would like to thank all those involved from the OSG, the sites, and the lab infrastructure support. You made this success possible!

