Hadroquarkonium

M. Voloshin

FTPI, University of Minnesota

Y(4.26), Y(4.32 - 4.36), Y(4.66)

• Y(4260): Confirmed by Belle, CLEO, CLEO-c. Also seen in $B \to \pi^+\pi^- J/\psi K$.

$$Y(4260) \to \pi^+\pi^- J/\psi$$
: $M = 4264^{+10}_{-12} \,\text{MeV}, \, \Gamma = 83^{+20}_{-17} \,\text{MeV}$

Other decay modes seen: $\pi^0 \pi^0 J/\psi$, $K^+ K^- J/\psi$. $\frac{\Gamma(Y \to K^+ K^- J/\psi)}{\Gamma(Y \to \pi^+ \pi^- J/\psi)} \approx 0.15$

No decays with $D\bar{D}$ in the final state were seen. In particular:

$$\frac{\Gamma(Y \to D\bar{D})}{\Gamma(Y \to \pi^{+}\pi^{-}J/\psi)} \lesssim 1.0, \qquad \frac{\Gamma(Y \to D\bar{D} + pions)}{\Gamma(Y \to \pi^{+}\pi^{-}J/\psi)} \lesssim 1.0$$

Impossible to explain if Y(4260) is a pure charmonium state!

Compare e.g. with $\Gamma(\psi(3770) \to D\bar{D})/\Gamma(\psi(3770) \to \pi^+\pi^-J/\psi) \approx 400$

• Y(4.32 - 4.36):

"Broad structure" in (ISR) $e^+e^- \to \pi^+\pi^-\psi'$ (not $J/\psi!$)

BaBar: $M = 4324 \pm 24 \,\text{MeV}$, $\Gamma = 172 \pm 33 \,\text{MeV}$ Belle: $M = 4361 \pm 9 \pm 9 \,\text{MeV}$,

 $\Gamma = 74 \pm 15 \pm 10 \,\mathrm{MeV}$ and additionally:

• Y(4.66)

Peak in $\pi^+\pi^-\psi'$ at $M = 4664 \pm 11 \pm 5 \,\text{MeV}$, $\Gamma = 48 \pm 15 \pm 3 \,\text{MeV}$.

Z(4430) Manifestly Exotic

Belle '07: Peak in $\pi^+\psi'$ inv. mass in the decays $B \to \pi^+\psi' K$. (6.5 σ significance). Z(4430): $M = 4333 \pm 4 \pm 2 \,\text{MeV}$, $\Gamma = 45^{+18}_{-15}{}^{+30}_{-13} \,\text{MeV}$. $\mathcal{B}(B^0 \to KZ^\pm) \,\mathcal{B}(Z^\pm \to \pi^\pm\psi') \approx 4 \times 10^{-5}$ (similar to $B \to KX(3872)$ followed by $X \to \pi^+\pi^-J/\psi$)

BaBaR did not confirm ...

- Suggested explanations:
- Y's:
 - Hybrids: $c\bar{c} + glue$

F.Close and P.Page, E.Kou and O.Pene

• Di-diquarks: $[cs][\bar{c}\bar{s}]$

L.Miani et.al.

Enhanced strangeness not likely in view of $\frac{\Gamma(Y \to K^+K^-J/\psi)}{\Gamma(Y \to \pi^+\pi^-J/\psi)} \approx 0.15$ Why a hybrid would chose to go into a particular charmonium state J/ψ or ψ' ? Why no very strong $D\bar{D}$ decays?

- -Z(4430):
 - Molecule/threshold cusp $D_1^+ \bar{D}^{*0} + \xi D^{*+} \bar{D}_1^0$. $M(D_1^0) = 2422.3 \pm 1.3 \,\text{MeV}, \, \Gamma = 20.4 \pm 1.7 \,\text{MeV}.$ $M(D^{*+}D_1^0) \approx 4430 \,\text{MeV}.$ For S-wave $1^+ \otimes 1^-$ possible J^P are $0^-, 1^-, \text{ and } 2^-.$ Rosner argues $J^P = 0^-$ (small energy release in $B \to ZK$).

 $Z \to D^* \bar{D}^* \pi$ should be much stronger than $Z \to \pi \psi'$.

Other charmonium+pions modes? Why $\pi \psi'$, rather than $\pi J/\psi$?

I have hard time understanding a resonance with the width 20 MeV having a binding energy $\sim 3 \,\mathrm{MeV}$ (decays faster than binds).

• Tetraquark: $[cu] + [\bar{c}\bar{d}]$ Miani et.al., Gershtein et.al. Not many new predictions. Same questions as for the molecule.

• If you ask me...

To me Y(4260), Y(4.32-4.36), Y(4.66), Z(4430) all look like 'a charmonium stuck in a light hadron'. At least this can explain why dominantly a specific charmonium state e.g. J/ψ or ψ' appears in the decay.

Here's what I mean:

Van der Waals interaction of charmonium with light hadronic matter

$$\langle B|H_{eff}|A\rangle = -\frac{1}{2}\,\alpha_{AB}\,\vec{E}^a\cdot\vec{E}^a$$

Chromo-polarizability: α_{AB} . Chromo-electric field \vec{E}^a .

 $|\alpha_{\psi'J/\psi}| \approx 2 \, GeV^{-3}$ is known from $\psi' \to \pi\pi \, J/\psi$.

Schwartz inequality: $\alpha_{J/\psi}\alpha_{\psi'} \geq \alpha_{\psi'J/\psi}^2$, so that either $\alpha_{J/\psi}$ or $\alpha_{\psi'}$ or both should be bigger than $2 \, GeV^{-3}$.

$$\langle X|\vec{E}^a\cdot\vec{E}^a|X\rangle \geq \langle X|\vec{E}^a\cdot\vec{E}^a-\vec{B}^a\cdot\vec{B}^a|X\rangle = -\frac{1}{2}\langle X|(F^a_{\mu\nu})^2|X\rangle = \frac{32\pi^2}{9}M_X^2$$

X=(Light hadron) \Rightarrow strong interaction with heavier hadronic states made of light quarks and gluons.

E.g. J/ψ binding potential V in heavy nuclei:

$$|V| \ge \frac{8\pi^2}{9} \,\alpha_{J/\psi} \, m_N \, \rho_N$$

 $V < -27 \,{\rm MeV}$ at $\rho_N = 0.16 \,{\rm fm}^{-3}$.

The interaction with the light quark-gluon matter within an excited hadron should be $few \times$ stronger due to higher ρ .

If charmonium — light-hadron interaction is described by potential V(x), the low-energy theorem implies that

$$\int V(x) \, d^3x \le -\frac{8\pi^2}{9} \, \alpha^{(\psi)} \, M_X$$

The existence of bound state depends on relation between the mass M_X and the size of the hadron R:

$$\alpha^{(\psi)} \, \frac{M_X \bar{M}}{R} \ge O(1)$$

 $(\bar{M} = M_X M_{\psi}/(M_X + M_{\psi})$ - reduced mass.)

If with excitation R grows slower than M_X then binding necessarily occurs at sufficiently high excitation. E.g. in bag model $R \propto M^{1/3}$.

Linear Regge trajectories: $R \propto M$ and a better analysis is needed.

In a holographic (soft wall) model with linear Regge behavior binding necessarily occurs at a high excitation.

(S. Dubynskiy, A. Gorsky, M.B.V.)

Spin S meson masses: eigenvalues of

$$\left(-\frac{\mathrm{d}^2}{\mathrm{d}z^2} + z^2 + 2S - 2 + \frac{S^2 - 1/4}{z^2}\right)\psi_n(z) = m_n^2 \psi_n(z) \quad \Rightarrow \quad m_n^2 = 4(n+S)$$

 $H_{eff} = -C \theta^{\mu}_{\mu}$ - source η of dilaton (localized at $\vec{x} = 0$, z = 0). $V(z, \vec{x}) = g(z) D(z, \vec{x}) \eta$ - extra potential in the eigenvalue problem:

$$V(z, \vec{x}) = -c z^6 \int_0^\infty d\tau \left(\frac{1}{2\pi\tau}\right)^{3/2} \exp\left(-\frac{x^2}{2\tau}\right) \frac{e^{-\tau}}{\sinh^3 \tau} \exp\left(-\frac{z^2}{2} \frac{e^{-\tau}}{\sinh \tau}\right)$$

 $c = C \text{ (string tension)}^{3/2}$ - dimensionless; $c \approx 1 \text{ at } \alpha^{(\psi)} = 2 \text{ Gev}^{-3}$.

• Decay to open heavy flavor mesons

If approximated by an effective potential for heavy $Q\bar{Q}$:

The tunneling momentum $|p_Q| = \sqrt{M_Q (V_{Q\bar{Q}} - E)} \sim \sqrt{M_Q \Lambda_{QCD}} \Rightarrow$

$$\Gamma(Y, Z \to D\bar{D}...) \sim \exp\left(-\int |p_Q(r)| dr\right) \sim \exp\left(-\sqrt{\frac{M_Q}{\Lambda_{QCD}}}\right)$$

If such interpretation of Y's and Z has anything to do with reality, there should be:

- bound states of J/ψ and/or ψ' with light nuclei and with baryonic resonances, i.e. baryo-charmonium decaying to e.g. pJ/ψ (+ pions).
- resonances containing χ_{cJ} charmonium, i.e. in χ_{cJ} +pion(s)
- decays (moderately suppressed) into non-preferred charmonium states, e.g. $Y(4260) \to \pi\pi\psi'$, or $Y(4.3) \to \pi\pi J/\psi$
- resonances containing excited bottomonium, $\Upsilon(3S)$, $\chi_b(2P)$, $\Upsilon(1D)$ in the mass range around 11 11.5 GeV

• Latest experimental additions

Belle 08: $Z_{1,2}^+ \to \pi^+ \chi_{c1}$. (Observed in $B \to K \pi^+ \chi_{c1}$)

 $Z_1: M \approx 4.05 \,\mathrm{GeV}, \,\Gamma \approx 80 \,\mathrm{MeV}.$ $Z_2: M \approx 4.25 \,\mathrm{GeV}, \,\Gamma \approx 180 \,\mathrm{MeV}.$

Notice: $Z(4430) - Z_2(4.25) \approx \psi' - \chi_{c1} \approx 180 \,\text{MeV}.$

Could it be that they have the same hosting light-meson resonance?

However $\Gamma_{Z_2} \approx 4 \Gamma_{Z(4430)}$ (???)

• Belle '08: $e^+e^- \to X(4630) \to \Lambda_c\bar{\Lambda}_c$ (???) Not well established. Is this Y(4.66)?

 $\Upsilon(5S)$ region in e^+e^- .

Belle '07: $\Gamma(\Upsilon(5S) \to \pi\pi\Upsilon(1S, 2S)) \gtrsim 100 \Gamma_{typical}$, $(0.6 - 0.8 \,\text{MeV vs. few keV})$

More detailed study: Belle 8/08 [ArXive 0808.2445]

Unexplained enhancement of e^+e^- to $\pi^+\pi^-\Upsilon$, $\pi^+\pi^-\Upsilon(2S)$ and $\pi^+\pi^-\Upsilon(3S)$ around 10.89 GeV

The shapes are not compatible with $\Upsilon(5S)$, neither can be explained by a single resonance, either common or individual for all three channels.

Notice the relative enhancement of $\pi\pi\Upsilon(2S)$. \Rightarrow Hadro-bottomonium with dominantly $\Upsilon(2S)$?

Conclusion

I am not entirely sure that the hadroquarkonium picture will pass further testing. But I belive that it has a chance and IMHO it is worth testing!