Are signatures of ultrahigh energy cosmic rays detectable in gamma rays?

K.K., D. Allard and M. Lemoine, submitted to A&A

time delay: temporal decorrelation if transient source

CR (10²⁰ eV) +
$$\gamma_{bg}$$
 \longrightarrow e^{+-} , γ_{UHE}

Cascade in IGM

interactions with radio/CMB photons

$$\gamma\gamma_{\mathrm{bg}} \to e^{+}e^{-} \longrightarrow e\,\gamma_{\mathrm{bg}} \to e\,\gamma \longrightarrow \dots \gamma_{\mathrm{TeV-GeV}}$$
pair
production

Inverse Compton no more interactions

Synchrotron nearby source

if source environment sufficiently magnetized

CR (10²⁰ eV) +
$$\gamma_{\text{bg}}$$
 \longrightarrow e^{+-} , γ_{UHE}

Cascade in IGM

interactions with radio/CMB photons

Synchrotron nearby source

if source environment sufficiently magnetized

$$e^{+-}$$
 γ_{GeV}

B, synchrotron no more interactions

 γ ray halo of limited extension around source

3

CR (10²⁰ eV) +
$$\gamma_{\text{bg}}$$
 \longrightarrow e^{+-} , γ_{UHE}

Cascade in IGM

interactions with radio/CMB photons

$$\gamma \gamma_{\rm bg} \rightarrow e^+ e^- \longrightarrow e \, \gamma_{\rm bg} \rightarrow e \, \gamma \longrightarrow \dots \gamma_{\rm TeV\text{-}GeV}$$
pair
production

B deflections

homogeneous B: flux completely diluted if $B_{IGM} > 3x10^{-11}G$ *Protheroe 86, Protheroe & Stanev 93, Aharonian et al. 94*

Synchrotron nearby source

if source environment sufficiently magnetized

CR (10²⁰ eV) +
$$\gamma_{bg}$$
 \longrightarrow e^{+-} , γ_{UHE}

Cascade in IGM

interactions with radio/CMB photons

$$\gamma \gamma_{\rm bg} \rightarrow e^+ e^- \longrightarrow e \gamma_{\rm bg} \rightarrow e \gamma \longrightarrow ... \gamma_{\rm TeV\text{-}GeV}$$

pair
production

B deflections

homogeneous B: flux completely diluted if $B_{IGM} > 3x10^{-11}G$ *Protheroe 86, Protheroe & Stanev 93, Aharonian et al. 94*

Synchrotron nearby source

if source environment sufficiently magnetized

e⁺⁻ \(\gamma \gamma \gamma \gamma \gamma \text{GeV} \)

B, synchrotron no more interactions

CR (10²⁰ eV) +
$$\gamma_{\text{bg}}$$
 \longrightarrow e^{+} , γ_{UHE}

Cascade in IGM

interactions with radio/CMB photons

$$\gamma \gamma_{\rm bg} \rightarrow e^+ e^- \longrightarrow e \gamma_{\rm bg} \rightarrow e \gamma \longrightarrow ... \gamma_{\rm TeV\text{-}GeV}$$

pair
production

B deflections

homogeneous B: flux completely diluted if $B_{IGM} > 3x10^{-11}G$

Protheroe & Stanev 93, Aharonian et al. 94

inhomogeneous B: flux dilution according to fraction of Universe

where
$$B_{IGM} > 3x10^{-11}G$$

K.K. et al. 2010

$$E_{\gamma}^2 \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \approx \underbrace{f_{1\mathrm{d}}($$

Synchrotron nearby source

if source environment sufficiently magnetized

$$e^{+}$$
 \longrightarrow γ_{GeV}

B, synchrotron no more interactions

CR (10²⁰ eV) +
$$\gamma_{\text{bg}}$$
 \longrightarrow e^{+-} , γ_{UHE}

Cascade in IGM

interactions with radio/CMB photons

$$\gamma\gamma_{\mathrm{bg}} \to e^{+}e^{-} \longrightarrow e\,\gamma_{\mathrm{bg}} \to e\,\gamma \longrightarrow \dots \gamma_{\mathrm{TeV-GeV}}$$
pair
production

B deflections

homogeneous B: flux completely diluted if $B_{IGM} > 3x10^{-11}G$ *Protheroe 86, Protheroe & Staney 93, Aharonian et al. 94*

inhomogeneous B: flux dilution according to fraction of Universe where $B_{IGM} > 3x10^{-11}G$

K.K. et al. 2010

 $E_{\gamma}^2 \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \approx \left(f_{1\mathrm{d}}(\langle B_{\theta})\right) e^{\frac{L_{\mathrm{cr}}}{8\pi d^2}} \left(\frac{E_{\gamma}}{E_{\gamma,\mathrm{max}}}\right)^{1/2}$

Synchrotron nearby source

if source environment sufficiently magnetized

$$e^{+}$$
 \longrightarrow γ_{GeV}

B, synchrotron no more interactions

Cascade in IGM

interactions with radio/CMB photons

$$\gamma \gamma_{\rm bg} \rightarrow e^+ e^- \longrightarrow e \, \gamma_{\rm bg} \rightarrow e \, \gamma \longrightarrow \dots \gamma_{\rm TeV\text{-}GeV}$$

pair
production

B deflections

homogeneous B: flux completely diluted if $B_{IGM} > 3x10^{-11}G$ *Protheroe 86, Protheroe & Staney 93, Aharonian et al. 94*

inhomogeneous B: flux dilution according to fraction of Universe where $B_{IGM} > 3x10^{-11}G$

K.K. et al. 2010

 $E_{\gamma}^2 \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \approx \underbrace{f_{1\mathrm{d}}(< B_{\theta})}_{e} \underbrace{L_{\mathrm{cr}}}_{8\pi d^2} \left(\frac{E_{\gamma}}{E_{\gamma,\mathrm{max}}}\right)^{1/2}$

Synchrotron nearby source

if source environment sufficiently magnetized

 e^{+} \longrightarrow γ_{GeV}

B, synchrotron no more interactions

Cascade in IGM

interactions with radio/CMB photons

$$\gamma\gamma_{\mathrm{bg}} \to e^{+}e^{-} \longrightarrow e\,\gamma_{\mathrm{bg}} \to e\,\gamma \longrightarrow \dots \gamma_{\mathrm{TeV-GeV}}$$
pair
production

B deflections

if source environment sufficiently magnetized

YGeV B, synchrotron no more interactions

y ray halo of limited extension around source

homogeneous B: flux completely diluted if $B_{IGM} > 3x10^{-11}G$ Protheroe & Stanev 93, Aharonian et al. 94

inhomogeneous B: flux dilution according to fraction of Universe where $B_{IGM} > 3x10^{-11}G$

K.K. et al. 2010

homogeneous magnetized sphere around source

Gabici & Aharonian 06

filaments, inhomogeneous B

K.K. et al. 2010

Explore influence of astrophysical parameters on gamma ray signal

Chemical compositions for UHECR: protons, Galactic mixed, iron, [mixed + low $E_{p,max}$] Various extragalactic magnetic field configurations (intensity, contrast, ...)

Explore influence of astrophysical parameters on gamma ray signal

Chemical compositions for UHECR: protons, Galactic mixed, iron, [mixed + low $E_{p,max}$] Various extragalactic magnetic field configurations (intensity, contrast, ...)

... using a complete propagation and interaction code

K.K. et al. 2009

Propagation in magnetic fields K.K. & Lemoine 2008a

Interactions of nuclei with cosmic backgrounds + multimessengers (γ , ν) *Allard et al. 05,* **SOPHIA** (*Mücke et al. 1999*), **EPOS** (*Werner et al. 06*), **CONEX** (*Bergmann et al. 07*) Gamma-ray cascades

+ cascaded component: flux x a few

 $L_{cr}(E>10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1}$

average type of source: fits Auger spectrum for $n_{sources} = 10^{-5} \ Mpc^{-3}$

distance to observer d = 100 Mpc

 $E_{\text{max}} = 10^{20.5} \text{ eV}$, spectral index = 2.3

mix 'iron rich' 2.0, $\underline{E}_{mox,p} = 10^{19} \text{ eV}$ E² dN_{gamma}/dE [GeV cm⁻² s⁻¹] 10^{-12} 10^{-13} 10^{-14} < B > = 1 nG10⁻¹⁵ 10¹² 10¹³ 10¹⁰ 10¹¹ 10⁹ 10⁸ 1014 10⁷ Energy [eV]

protons 2.3

 10^{-1}

Extragalactic magnetic field configurations

Chemical compositions of primary UHECR

+ cascaded component: flux x a few

 $L_{cr}(E>10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1}$

average type of source: fits Auger spectrum for $n_{\text{sources}} = 10^{-5} \text{ Mpc}^{-3}$

distance to observer d = 100 Mpc

 $E_{\text{max}} = 10^{20.5} \text{ eV}$, spectral index = 2.3

Extragalactic magnetic field configurations

Chemical compositions of primary UHECR

+ cascaded component: flux x a few

 $L_{cr}(E>10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1}$

average type of source: fits Auger spectrum for $n_{\text{sources}} = 10^{-5} \text{ Mpc}^{-3}$

distance to observer d = 100 Mpc

 $E_{max} = 10^{20.5} \text{ eV}$, spectral index = 2.3

Extragalactic magnetic field configurations

Chemical compositions of primary UHECR

+ cascaded component: flux x a few

 $L_{cr}(E>10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1}$

average type of source: fits Auger spectrum for $n_{\text{sources}} = 10^{-5} \text{ Mpc}^{-3}$

distance to observer d = 100 Mpc $E_{\text{max}} = 10^{20.5} \text{ eV}$, spectral index = 2.3

Extragalactic magnetic field configurations

Chemical compositions of primary UHECR

+ cascaded component: flux x a few

$L_{cr}(E>10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1}$

average type of source: fits Auger spectrum for $n_{\text{sources}} = 10^{-5} \text{ Mpc}^{-3}$

anisotropic $B_0=1$ nG

E² dN

distance to observer d = 100 Mpc

anisotropic $B_0=0.1nG$

isotropic $B_0=1$ nG

 $\rm E^2~dN_{gammo}/dE~[GeV~cm^{-2}]$

 10^{-12}

 10^{-13}

10

10⁻¹²

 10^{-13}

 10^{-14}

10-15

 $E_{\text{max}} = 10^{20.5} \text{ eV}$, spectral index = 2.3

detectable only if:

- particularly powerful source (rare)
- close-by source (Cen A?)

log Energy [eV]

Chemical compositions of primary UHECR

Energy [eV]

Case of particularly powerful sources

Case of particularly powerful sources

Case of particularly powerful sources

 $L_{cr,19} = 10^{44} \text{ erg s}^{-1}$

d = 100 Mpc

Case of close-by sources: Cen A

for synchrotron emission: extended and strong magnetic field necessary

-> lobes of Cen A?

 $B_{lobes} \sim 1~\mu G,~l_{coh} \sim 20~kpc,~R_{lobe} \sim 100~kpc,~L_{cr,19} \sim 3x10^{39}~erg~s^{-1}$

7 degrees in the sky -> sensitivity loss of $\theta_{\text{source}}/\theta_{\text{PSF}} \sim 7$

$$F_{\text{lobe},10\,\text{TeV}} \sim \left(\frac{d_{\text{Cen A}}}{d_{\text{fil}}}\right)^{-2} \frac{L_{\text{Cen A}}}{10^{42}\,\text{erg/s}} \frac{R_{\text{lobe}}}{5\,\text{Mpc}} F_{\text{fil},10\,\text{GeV}}$$

total decrease of factor ~ 10³ compared to average sources -> hardly observable

UHE photons could be detectable with Auger *Taylor et al. 09* expected rate of $>10^{19}$ eV photons from Cen A, assuming it is responsible for 10% of the $6x10^{19}$ eV flux: **0.2–0.3 events/yr**

Are signatures of UHECR detectable in gamma rays?

K.K., D. Allard, M. Lemoine, submitted to A&A

We studied the detectability of UHECR signatures in gamma rays, taking into account major astrophysical constraints:

- source environment
- magnetic configuration in the Universe
- types of emission: EM cascade, synchrotron emission
- UHECR composition
- source luminosity
- observed UHECR spectrum

Flux ultimately depends on **injected energy at the source** (robust according to B, composition, ...).

Our conclusions on detectability:

- average type of sources not observable by current and upcoming instruments (2 orders of magnitude)
- powerful sources:
 - $L_{19}=10^{44} \text{ erg s}^{-1}$ at 100 Mpc at limit of observed CR spectrum, would produce a detectable γ halo of ~2° $L_{19}=10^{46} \text{ erg s}^{-1}$ at 1 Gpc produce 10% of observed CR spectrum, and a detectable γ halo of fract. of deg. Note: halo = clear signature of UHECR
- close-by sources: Cen A synchrotron radiation due to injection of UHECR in lobes not observable
 UHE emission potentially observable with Auger if Cen A is responsible for 10% of the 6x10¹⁹ eV flux