

Characterisation of the KURRI FFAG main ring

C. T. Rogers, on behalf of the KURRI-FFAG collaboration ASTeC Intense Beams Group Rutherford Appleton Laboratory

FFAG accelerators for muons

- Need to accelerate muons quickly they decay!
- Rapid Cycling Synchrotron
- Recirculating Linear Accelerator
- Fixed-Field Alternating Gradient Accelerator (FFAGs)
 - Higher bending field at large radii
 - Scale the optics with radius keeps constant tune

KURRI FFAG accelerators

- 11 MeV linac for injection
- Three FFAG accelerators at KURRI
 - Old injector ring 3 11 MeV
 - ERIT ring 11 MeV internal target machine
 - Main ring 11 150 MeV; test ring for test ADS Reactor

ext. septum

F12

Design features

- Yoke-free combined function scaling Table 1: Parameters of the 150 MeV FFAG magnets
- Tight bend at injection
- Variable frequency RF (not a cyclotron)
 - Magnetic material in RF cavity
- Diagnostics
 - Radial probe
 - Beam monitors
 - Horizontal and vertical perturbators

Parameter	Value	
r_0	4.54	m
Cell structure	DFD	
N_{cells}	12	
k, field index	7.6	
Injection Energy	11	MeV
Extraction Energy	100 or 150	MeV
f_{rf}	1.6-5.2	MHz
\mathbf{B}_{max}	1.6	T

Experimental Programme

- Experimental programme aims to:
 - Validate simulation of the FFAG
 - Kinematics
 - Foil/stochastics
 - (Later) Examine space-charge dominated regime
 - Effect of foil
 - Effect of high radius/not symmetric beam-pipe
- Measure
 - Closed orbit distortion
 - Energy-dependent tune
 - Field index
 - Foil characteristics

Transverse Simulation

- Excellent agreement between many codes
- SCODE: FFAGs and synchrotron code with space charge
- OPAL: Cyclotron modelling code with space charge
- MAUS: Geant4 based code (yes the MICE code) with good material physics models
- Zgoubi: standard FFAG code
- EARLIETIMES: KURRI home-brew code

Closed orbit distortion

- Closed orbit distortion (COD)
 - Magnetic alloy in RF cavity
 - Yoke-free scaling magnets
- Measure using radial probe
 - Place probe (collimator) at a given radius
 - Inject beam at 11 MeV
 - Look at time-to-loss
 - Move probe
 - Repeat...
- Allows to study radial position of beam
- Make a coil to correct COD

Measure field index

- Measure closed orbit in the acceleration cycle
 - Move radial probe;
 - Accelerate beam and look at RF frequency when the beam scrapes on the probe
 - Apply:

$$k = \gamma^2 \frac{df/f}{dr/r} - (1 - \gamma^2).$$

Note influence of closed orbit distortion

Measured Tune

- Use vertical perturbator to excite vertical coherent oscillations
- For horizontal tune
 - Use horizontal perturbator
 - In low energy region use RF cavity
 - In high energy region use extraction kicker
- Look for coherent oscillations in bunch monitors

Foil Model

- Use GEANT4 to model foil
 - Energy loss and MCS is consistent with PDG numbers
 - Note slight over estimate of the tail of the stopping power distribution for C

Simulation of Foil in Ring

- Combined ring simulation
 - Try simulating foil and RF in the ring
 - How can we study the foil effect on beam?
- Vary RF cavity voltage
 - When does the RF bucket form?

Measurement of foil energy loss

- Measure time of RF peak compared to bunch peak
- Validate longitudinal model
 - What voltage is required to get RF bucket formation?
- Get RF bucket formation between 0.46 V – 1.33 V
 - Consistent with MC
- Seek to quantify

- Characterisation of KURRI FFAG
 - Closed orbit
 - Tune
 - Field index
 - Foil model (energy loss)

Towards high intensity

- Looking to move to high intensity running
 - Correct COD
 - Correct tune shift
 - Improve transmission