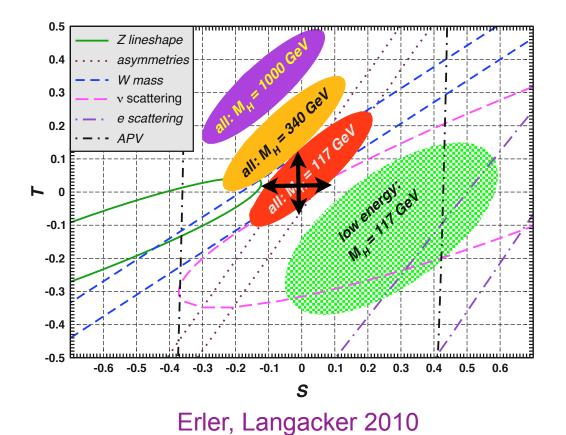



Composite Higgs



Little Hierarchy Problem

<u>Assume</u> SM is correct effective low-energy theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}}(h^0, \ldots) + \Delta \mathcal{L}$$
$$\Delta \mathcal{L} = \frac{1}{\Lambda_T^2} (H^{\dagger} D_{\mu} H)^2 + \frac{1}{\Lambda_S^2} (H^{\dagger} \tau_a H) W_a^{\mu\nu} B_{\mu\nu} + \cdots$$

- $\Rightarrow \Lambda_S \lesssim 10 \text{ TeV}$ $\Lambda_T \lesssim 5 \text{ TeV}$
 - But SM with no new physics below 10 TeV is unnatural!

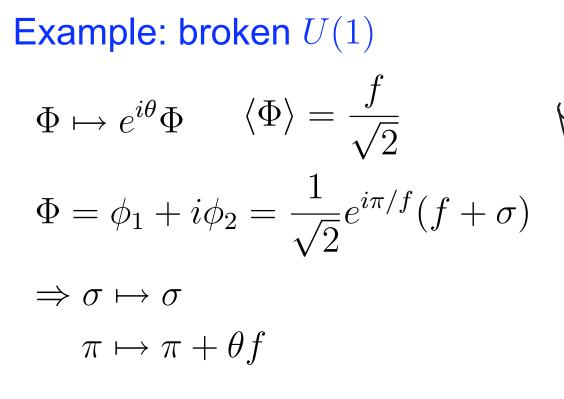
Beyond the SM

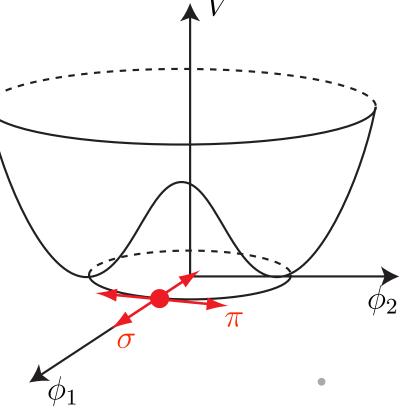
Suggests adding new physics to standard model

- SUSY
- Composite Higgs

Higgs as Pseudo Nambu-Goldstone Boson

• 1961: Nambu and Jona Lasinio propose dynamical explanation for small π mass


 1962: Goldstone explains symmetry origin of mechanism



 1984: Georgi and Kaplan propose Higgs as pseudo-Nambu-Goldstone boson

Nambu-Goldstone Bosons

Shift symmetry forbids mass for π In fact, π has only derivative interactions:

$$V(\Phi^{\dagger}\Phi) = V(\frac{1}{2}\sigma^{2})$$

$$\partial^{\mu}\Phi^{\dagger}\partial_{\mu}\Phi = \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma + \frac{1}{2}\left(1 + \frac{\sigma}{f}\right)^{2}\partial^{\mu}\pi\partial_{\mu}\pi$$

PNGB Higgs

Simplest example: $SU(3) \rightarrow SU(2)$

$$\begin{split} \Phi &= \text{ triplet with } \langle \Phi^{\dagger} \Phi \rangle = \frac{f^2}{2} \\ SU(2)_W &= \begin{pmatrix} 1 & 0 \\ 0 & U_2 \end{pmatrix} = \begin{array}{l} \text{electroweak gauge group} \\ \text{(ignore } U(1)_Y \text{ for simplicity)} \end{split}$$

Expand about vacuum with unbroken $SU(2)_W$

$$\Phi = \frac{1}{\sqrt{2}} e^{i\Pi/f} \begin{pmatrix} 0 \\ 0 \\ f+\sigma \end{pmatrix} \qquad \Pi = \frac{1}{\sqrt{2}} \begin{pmatrix} \eta/\sqrt{3} & 0 & H_1 \\ 0 & \eta/\sqrt{3} & H_2 \\ H_1^* & H_2^* & -2\eta/\sqrt{3} \end{pmatrix}$$

$$H = \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = SU(2)$$
 doublet

SU(3) exact \Rightarrow shift symmetry $H \mapsto H + \lambda + \cdots$

PNGB Higgs (cont'd)

Most general VEV: $\langle \Phi \rangle = \frac{f}{\sqrt{2}} \begin{pmatrix} 0 \\ \sin \theta \\ \cos \theta \end{pmatrix}$

Breaks electroweak symmetry $v = f \sin \theta$

 $f \sim \text{scale of new physics}$ $\sin \theta \ll 1 \Leftrightarrow f \gg v \text{ (SM limit)}$

$$\Rightarrow \langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\v \end{pmatrix}$$

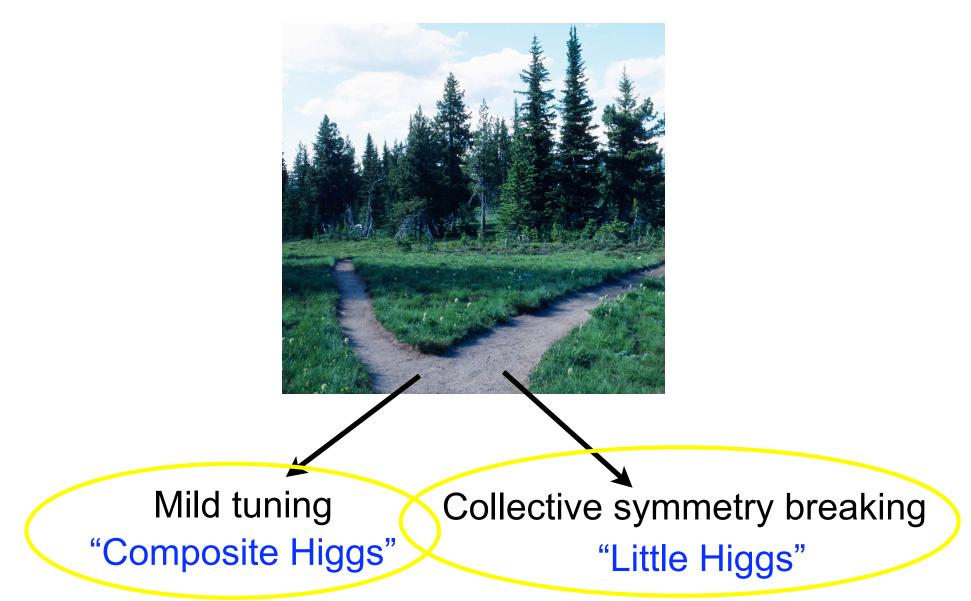
"Electroweak symmetry breaking by vacuum misalignment"

PNGB Higgs

 $H \mapsto H + \lambda$ forbids Higgs mass

Forbids <u>all</u> non-derivative couplings gauge, Yukawa, $(H^{\dagger}H)^2$,...

Must break shift symmetry


Breaking terms can be naturally small

$$V = \epsilon F\left(\frac{H}{f}\right) \qquad \begin{array}{l} \epsilon \ll 1 \\ f = \text{scale of new physics} \end{array}$$

 $\langle H \rangle$ determined by F' = 0 independent of ϵ

 $\Rightarrow \langle H \rangle \sim f \qquad \text{without special structure}$ Generically \Rightarrow new physics at TeV

Models of PNGB Higgs

"When you come to a fork in the road, take it." Yogi Berra

Composite Higgs

Accept some tuning as the price for a realistic theory

$$V(H) = \epsilon_1 F_1(H) + \epsilon_2 F_2(H)$$

$$F_i = a_i f^2 H^{\dagger} H + b_i (H^{\dagger} H)^2 + \cdots \qquad i = 1, 2$$

$$\Rightarrow m_H^2 = (\epsilon_1 a_1 + \epsilon_2 a_2) f^2$$
$$\lambda = \epsilon_1 b_1 + \epsilon_2 b_2$$
$$v^2 = \frac{m_H^2}{\lambda} = \frac{\epsilon_1 a_1 + \epsilon_2 a_2}{\epsilon_1 b_1 + \epsilon_2 b_2} f^2$$

 $v \ll f$ due to accidental cancelation "Little tuning"

Minimal Technicolor

(Evans, ML, Galloway, Tacchi 2010)

 $SU(2)_{\rm TC}$ strong gauge group

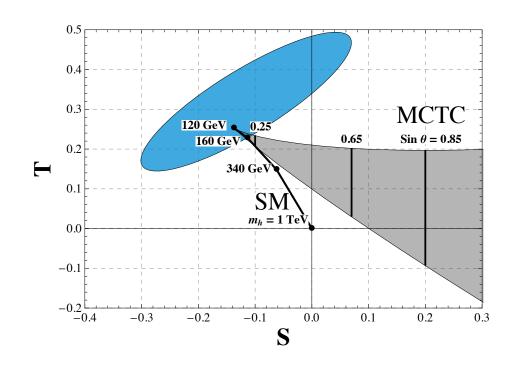
$$\Psi_L = \begin{pmatrix} U_L \\ D_L \end{pmatrix} \qquad \Psi_R = \begin{pmatrix} U_R \\ D_R \end{pmatrix}$$

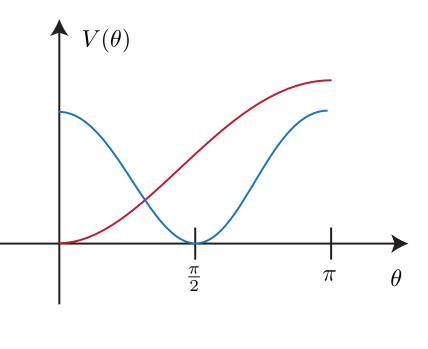
 $\Psi_L \simeq \Psi_R^c \Rightarrow \text{ approximate } SU(4) \text{ acting on } \Upsilon_L = \begin{pmatrix} U_L \\ D_L \\ U_R^c \\ U_R^c \end{pmatrix}$

$$\begin{split} \langle \Upsilon_L^a \Upsilon_L^b \rangle &= -\langle \Upsilon_L^b \Upsilon_L^a \rangle \Rightarrow SU(4) \to Sp(4) \\ & (SO(6) \to SO(5)) \end{split}$$

General VEV

$$\langle \Upsilon_L^a \Upsilon_L^b \rangle \propto \begin{pmatrix} \cos \theta \, \epsilon & \sin \theta \, 1_2 \\ -\sin \theta \, 1_2 & -\cos \theta \, \epsilon \end{pmatrix} \quad \epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$


- $\sin \theta \rightarrow 0$ EW unbroken
- $\sin \theta \rightarrow 1$ technicolor limit Minimal technicolor = composite Higgs


Minimal Technicolor (cont'd)

5 NGBs - 3 eaten = 2 physical scalars: h^0 , A

 $V(h^0, A)$ from SU(4) breaking

- EW, top loops
- $\Delta \mathcal{L} = m_L \Psi_L \Psi_L + m_R \Psi_R \Psi_R$

tuning $\sim \frac{v^2}{f^2} \sim \sin^2 \theta \sim 10\%$

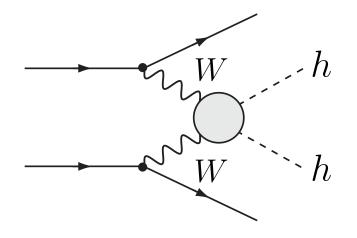
Minimal Composite Higgs

(Agashe, Contino, Pomarol 2005)

Based on symmetry breaking pattern $SO(5) \rightarrow SO(4)$

4 NGBs - 3 eaten = 1 physical scalar: h^0

Minimal from bottom-up perspective


But: UV completion appears to require extra dimensions (string theory?)

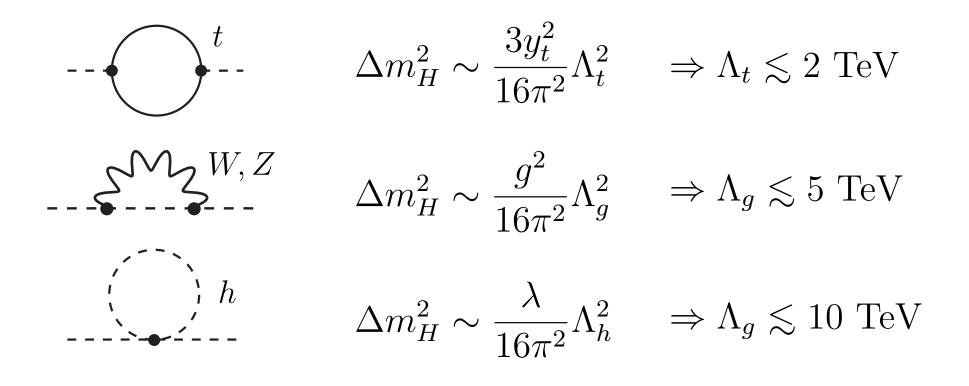
Signals

- SM-like Higgs boson
- Anomalous Higgs couplings

Similar to $\tan\beta$ effects in 2 Higgs doublet models

• "Smoking gun" signal: strong Higgs production (Giudice, Grojean, Pomarol, Rattazzi 2007)

Little Higgs



Arkani-Hamed, Cohen, Georgi, 2001

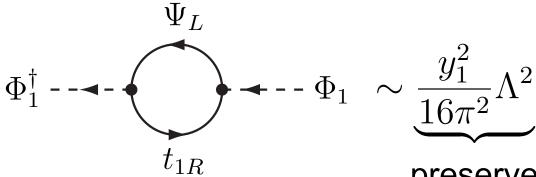
Little Higgs

Bottom-up view of naturalness

Non-derivative couplings of Higgs \Rightarrow naturalness problems Add new physics to cancel loop effects (c.f. SUSY) Require tuning $\lesssim 10\%$

Collective Symmetry Breaking

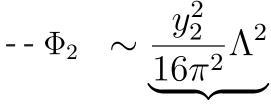
Example: $SU(3) \to SU(2)$ (ignore $U(1)_Y$ again) $\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\0\\f_1 \end{pmatrix} \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\0\\2 \end{pmatrix}$

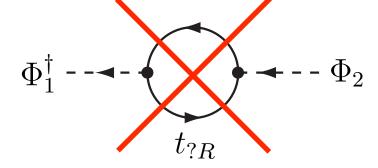

Gauge full $SU(3) \Rightarrow$ exact symmetry

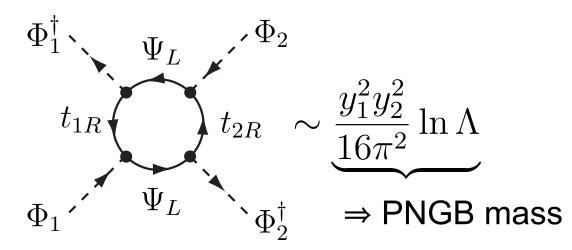
$$\Psi_L = \begin{pmatrix} t_L \\ b_L \\ T_L \end{pmatrix} \qquad t_{1R}, t_{2R}, b_R$$

 $\mathcal{L}_{\text{Yukawa}} = y_1 \bar{\Psi}_L \Phi_1 t_{1R} + y_2 \bar{\Psi}_L \Phi_2 t_{2R}$

 $y_1 \rightarrow 0 \Rightarrow \text{exact } SU(3)_2 \rightarrow SU(2)_2 \text{ and } \text{vice versa}$ Both $y_1, y_2 \neq 0$ required for non-derivative couplings of PNGB Higgs


Collective Symmetry Breaking


preserves $SU(3)_2 \rightarrow SU(2)_2$ \Rightarrow no PNGB Higgs mass



preserves $SU(3)_1 \rightarrow SU(2)_1$ \Rightarrow no PNGB Higgs mass

Not allowed

Collective Symmetry Breaking

Only logarithmically sensitive to new physics

Note that quadratic divergences are canceled by "partner" particles with same spin

$t \to T_L, T_R$	$m_T \lesssim 2 \text{ TeV}$
$W \to W'$	$m_{W'} \lesssim 5 { m TeV}$
$h \to h$	$m_{h'} \lesssim 10 { m TeV}$

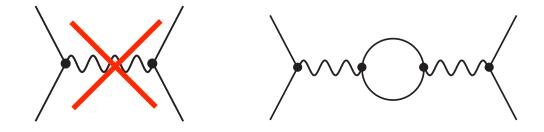
Realistic Models

Requirements:

- Custodial SU(2)
- Collective symmetry breaking for top and gauge loops (separate mechanisms)

Precision electroweak fit not automatic

⇒ corrections large enough to spoil SM-like fit


But that was the original motivation...

T Parity (Cheng, Low 2003)

Introduce new discrete symmetry where partners = odd

Partners only appear in loop diagrams ⇒ automatic precision electroweak fit

Lightest T-odd particle is dark matter candidate (c.f. SUSY)

But models become even more complicated...

Signals

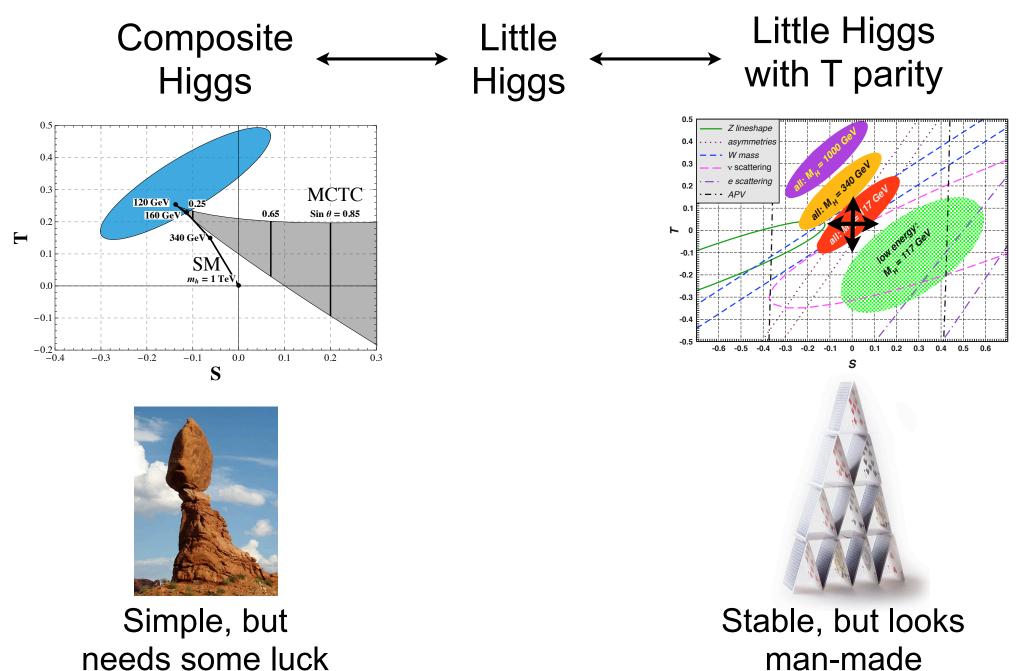
- Top partner:
 - $gg \to T, \ Wb \to T$

 $T \rightarrow th, tZ, bW$

can be seen at LHC up to $m_T \simeq 3 \text{ TeV}$ (100 fb⁻¹)

• Z partner:

 $\bar{q}q \to Z' \to \bar{\ell}\ell$


can be seen up to $m_{Z'} \simeq 2.5 \text{ TeV}$

(See e.g. Burdman, Perelstein, Pierce 2002; Han, Logan, McElrath, Wang 2003)

Summary

- Shift symmetry can screen Higgs mass from UV scales
- Higgs as pseudo Nambu-Goldstone boson is a natural realization
- SM-like precision electroweak fit requires either mild tuning or additional structure (collective breaking, T parity)

IMHO

