Deeply Virtual Neutrino Scattering Ales Psaker Hampton University and Theory Group @ Jefferson Laboratory W. Melnitchouk, A.V. Radyushkin, and A. Psaker, Phys. Rev. D 75, 054001 (2007). NuInt07 @ FNAL, May 30 - June 3, 2007 ## Motivation Compton scattering provides a unique tool for studying hadrons ### **Outline** - ***** Introduction - **❖** Handbag Factorization - **❖** Generalized Parton Distributions - **❖** Deeply Virtual Neutrino Scattering - Summary - Outlook ### Introduction Q D Lagrangian $$\mathcal{L}=- rac{1}{2}{ m Tr}G_{\mu u}G^{\mu u}+\sum_{ m flavors}ar{\psi}_q(i\not\!\!D-m_q)\psi_q$$ $G_{\mu u}\equiv\partial_\mu A_ u-\partial_\mu A_ u-ig[A_\mu,A_ u]$, $D_\mu\equiv\partial_\mu-igA_\mu$ - In principle, QCD embraces all phenomena of hadronic physics - Difficulty of QCD formulation in terms of colored degrees of freedom - Projection of quark and gluon fields onto hadronic states phenomenological functions (e.g. form factors, parton distribution functions, generalized parton distributions) describe hadronic matrix elements ## Handbag Factorization - Only one active parton - Hard process: perturbation theory - Soft, non-perturbative physics: PDFs, GPDs - Both photons highly virtual with equal space-like virtualities forward Compton scattering amplitude: DIS - One of the photons highly virtual, small t nonforward Compton scattering amplitude: DVCS, DVMP - Both photons are real, large t. WACS ### **Generalized Parton Distributions** Mueller at al (94), Ji (97), Radyushkin (97) - Hybridization encapsulating longitudinal momentum distributions and transverse coordinate distributions of hadron's constituents - Universality unified description of different hard processes Measuring coherence between two different parton momentum states in hadron, spin correlations, and studying flavor nondiagonal distributions through hadron transitions • At leading twist-2 level: $$H_f(x,\xi,t), E_f(x,\xi,t)$$ and $\widetilde{H}_f(x,\xi,t), \widetilde{E}_f(x,\xi,t)$ • Reduction formulas in forward limit: $p_1 = p_2, r = 0, \xi = 0, t = 0$ $$H_f(x, 0, 0) = \begin{cases} f_N(x) & x > 0 \\ -\bar{f}_N(-x) & x < 0 \end{cases}$$ Sum rules in local limit: $$\int_{-1}^{1} dx H_{f}(x,\xi,t) = F_{1f}(t), \int_{-1}^{1} dx E_{f}(x,\xi,t) = F_{2f}(t)$$ $$\int_{-1}^{1} dx \widetilde{H}_{f}(x,\xi,t) = g_{Af}(t), \int_{-1}^{1} dx \widetilde{E}_{f}(x,\xi,t) = g_{Pf}(t)$$ Ji's sum rule: access to quark angular momentum and further extract gluon contribution $$J_{q} = \frac{1}{2} \sum_{f} \int_{-1}^{1} x dx \left[H_{f}(x, \xi, 0) + E_{f}(x, \xi, 0) \right] = \frac{1}{2} \Delta \Sigma_{q} + L_{q} \qquad \frac{1}{2} = J_{q} + J_{g}$$ # Deeply Virtual Neutrino Scattering - Why **neutrino** beam? - 1. **Different set of GPDs** due to axial part of *V-A* interaction (study C-odd and C-even combinations of GPDs, i.e. measuring valence and sea) - 2. Different flavor decomposition, more sensitive to d-quarks - 3. **Studying flavor non-diagonal distributions** (e.g. neutron-to-proton transition) - DVCS-like process: Compton Bethe-Heitler ## Weak Virtual Compton Amplitude • Handbag dominance in Bjorken regime: $-q_1^2$, $s \equiv (p_1 + q_1)^2 \rightarrow \infty$, $x_B \equiv -q_1^2/2(p_1 \cdot q_1)$ DVCS kinematics: $s > -q_1^2 >> -t$ (keeping *t*-dependence in soft part) $$\mathcal{T}_{W}^{\mu\nu} = i \int d^{4}z \ e^{iqz} \left\langle N' \left(p - r/2, s_{2} \right) \right| T \left\{ J_{EM}^{\mu} \left(z/2 \right) J_{W}^{\nu} \left(-z/2 \right) \right\} \left| N \left(p + r/2, s_{1} \right) \right\rangle$$ $$p \equiv (p_1 + p_2)/2, q \equiv (q_1 + q_2)/2 \& r = p_1 - p_2 = q_2 - q_1$$ Two types of vertices: $$Z^0 o qq$$ or $W^\pm o qq$ Nonlocal light-cone expansion of T-product in terms of QCD bilocal operators in coordinate space I.I. Balitsky and V.M. Braun, Nucl. Phys. B311, 541 (1989). Weak neutral and electromagnetic currents: $$iT \left\{ J_{EM}^{\mu} \left(z/2 \right) J_{WN}^{\nu} \left(-z/2 \right) \right\} \ = \ -\frac{z_{\rho}}{4\pi^{2}z^{4}} \sum_{f} Q_{f} \left\{ c_{V}^{f} \left[s^{\mu\rho\nu\eta} \mathcal{O}_{\eta}^{f-} \left(z \mid 0 \right) - i \epsilon^{\mu\rho\nu\eta} \mathcal{O}_{5\eta}^{f+} \left(z \mid 0 \right) \right] \right\}$$ $$- c_{A}^{f} \left[s^{\mu\rho\nu\eta} \mathcal{O}_{5\eta}^{f-} \left(z \mid 0 \right) - i \epsilon^{\mu\rho\nu\eta} \mathcal{O}_{\eta}^{f+} \left(z \mid 0 \right) \right] \right\}$$ $$\mathcal{O}_{\eta}^{f\pm}(z|0) \equiv \left[\bar{\psi}_{f}(z/2)\gamma_{\eta}\psi_{f}(-z/2)\pm(z\to-z)\right]$$ $$\mathcal{O}_{5\eta}^{f\pm}(z|0) \equiv \left[\bar{\psi}_{f}(z/2)\gamma_{\eta}\gamma_{5}\psi_{f}(-z/2)\pm(z\to-z)\right]$$ $$c_V^{u,c,t} = 1/2 - 2Q_{u,c,t} \sin^2 \theta_W$$ $$c_V^{d,s,b} = -1/2 - 2Q_{d,s,b} \sin^2 \theta_W$$ $$c_A^{u,c,t} = 1/2$$ $$c_A^{d,s,b} = -1/2$$ Weak charged and electromagnetic currents: different initial and final nucleons $$Q_f - Q_{f'} = \pm 1$$ $$\begin{aligned} & \left[Q_{f'} \bar{\psi}_{f'}(z/2) \not z \psi_f(-z/2) \pm Q_f(z \to -z) \right] = Q_{\pm} \mathcal{O}^{f'f+}(z|0) + Q_{\mp} \mathcal{O}^{f'f-}(z|0) \\ & \left[Q_{f'} \bar{\psi}_{f'}(z/2) \not z \gamma_5 \psi_f(-z/2) \pm Q_f(z \to -z) \right] = Q_{\pm} \mathcal{O}_5^{f'f+}(z|0) + Q_{\mp} \mathcal{O}_5^{f'f-}(z|0) \end{aligned}$$ $$Q_{\pm} = (Q_{f'} \pm Q_f)/2 \qquad \mathcal{O}^{f'f\pm}(z \mid 0) \equiv \left[\bar{\psi}_{f'}(z/2) \not z \psi_f(-z/2) \pm (z \to -z) \right]$$ $$\mathcal{O}_5^{f'f\pm}(z \mid 0) \equiv \left[\bar{\psi}_{f'}(z/2) \not z \gamma_5 \psi_f(-z/2) \pm (z \to -z) \right]$$ Insolating twist-2 part, and parametrizing its matrix elements on light-cone in terms of GPDs $$\langle N(p_{2}, s_{2}) | \mathcal{O}^{f\pm}(z | 0) | N(p_{1}, s_{1}) \rangle_{z^{2}=0} = \bar{u}(p_{2}, s_{2}) \not z u(p_{1}, s_{1}) \int_{-1}^{1} dx \ e^{ixp \cdot z} H_{f}^{\pm}(x, \xi, t)$$ $$+ \bar{u}(p_{2}, s_{2}) \frac{(\not z \not v - \not v \not z)}{4M} u(p_{1}, s_{1}) \int_{-1}^{1} dx \ e^{ixp \cdot z} E_{f}^{\pm}(x, \xi, t)$$ $$\langle N(p_{2}, s_{2}) | \mathcal{O}_{5}^{f\pm}(z | 0) | N(p_{1}, s_{1}) \rangle_{z^{2}=0} = \bar{u}(p_{2}, s_{2}) \not z \gamma_{5} u(p_{1}, s_{1}) \int_{-1}^{1} dx \ e^{ixp \cdot z} \widetilde{H}_{f}^{\mp}(x, \xi, t)$$ $$- \bar{u}(p_{2}, s_{2}) \frac{(r \cdot z)}{2M} \gamma_{5} u(p_{1}, s_{1}) \int_{-1}^{1} dx \ e^{ixp \cdot z} \widetilde{E}_{f}^{\mp}(x, \xi, t)$$ $$\langle N'(p_{2}, s_{2}) | \mathcal{O}^{f'f^{\pm}}(z | 0) | N(p_{1}, s_{1}) \rangle_{z^{2}=0} = \bar{u}(p_{2}, s_{2}) \not z u(p_{1}, s_{1}) \int_{-1}^{1} dx \, e^{ixp \cdot z} H_{f'f}^{\pm}(x, \xi, t) + \bar{u}(p_{2}, s_{2}) \frac{(\not z \not r - \not r \not z)}{4M} u(p_{1}, s_{1}) \int_{-1}^{1} dx \, e^{ixp \cdot z} E_{f'f}^{\pm}(x, \xi, t) \langle N'(p_{2}, s_{2}) | \mathcal{O}_{5}^{f'f^{\pm}}(z | 0) | N(p_{1}, s_{1}) \rangle_{z^{2}=0} = \bar{u}(p_{2}, s_{2}) \not z \gamma_{5} u(p_{1}, s_{1}) \int_{-1}^{1} dx \, e^{ixp \cdot z} \widetilde{H}_{f'f}^{\mp}(x, \xi, t) - \bar{u}(p_{2}, s_{2}) \frac{(r \cdot z)}{2M} \gamma_{5} u(p_{1}, s_{1}) \int_{-1}^{1} dx \, e^{ixp \cdot z} \widetilde{E}_{f'f}^{\mp}(x, \xi, t)$$ Standard DVCS measures only plus GPDs, but here also accessing minus distributions (i.e. *valence configuration*) $$\begin{split} \mathcal{T}_{\text{WN}}^{\mu\nu} &= -\frac{1}{4(p \cdot q)} \Big\{ \Big[\frac{1}{(p \cdot q_2)} (p^{\mu}q_2^{\nu} + p^{\nu}q_2^{\mu}) - g^{\mu\nu} \Big] \Big[\mathcal{H}_{\text{WN}}^{+}(\xi, t) \bar{u}(p_2, s_2) \not q_2 u(p_1, s_1) \\ &+ \mathcal{E}_{\text{WN}}^{+}(\xi, t) \bar{u}(p_2, s_2) \frac{(\not q_2 f - f \not q_2)}{4M} u(p_1, s_1) - \tilde{H}_{\text{WN}}^{-}(\xi, t) \bar{u}(p_2, s_2) \not q_2 \gamma_5 u(p_1, s_1) \\ &+ \tilde{\mathcal{E}}_{\text{WN}}^{-}(\xi, t) \frac{(q_2 \cdot r)}{2M} \bar{u}(p_2, s_2) \gamma_5 u(p_1, s_1) \Big] + \Big[\frac{1}{(p \cdot q_2)} i \epsilon^{\mu\nu\rho\eta} q_{2\rho} p_{\eta} \Big] \Big[\tilde{H}_{\text{WN}}^{+}(\xi, t) \bar{u}(p_2, s_2) \not q_2 \gamma_5 u(p_1, s_1) \\ &- \tilde{\mathcal{E}}_{\text{WN}}^{+}(\xi, t) \frac{(q_2 \cdot r)}{2M} \bar{u}(p_2, s_2) \gamma_5 u(p_1, s_1) - \mathcal{H}_{\text{WN}}^{-}(\xi, t) \bar{u}(p_2, s_2) \not q_2 u(p_1, s_1) \\ &- \mathcal{E}_{\text{WN}}^{-}(\xi, t) \bar{u}(p_2, s_2) \frac{(\not q_2 f - f \not q_2)}{4M} u(p_1, s_1) \Big] \Big\} \end{split}$$ $$\mathcal{H}_{WN}^{+(-)}(\xi,t) \equiv \sum_{f} Q_{f} c_{V(A)}^{f} \int_{-1}^{1} \frac{dx}{(x-\xi+i0)} H_{f}^{+(-)}(x,\xi,t)$$ $$= \sum_{f} Q_{f} c_{V(A)}^{f} \int_{-1}^{1} dx \ H_{f}(x,\xi,t) \left(\frac{1}{x-\xi+i0} \pm \frac{1}{x+\xi-i0}\right)$$ $$\mathcal{E}_{WN}^{+(-)}(\xi,t) \equiv \sum_{f} Q_{f} c_{V(A)}^{f} \int_{-1}^{1} \frac{dx}{(x-\xi+i0)} E_{f}^{+(-)}(x,\xi,t)$$ $$= \sum_{f} Q_{f} c_{V(A)}^{f} \int_{-1}^{1} dx \ E_{f}(x,\xi,t) \left(\frac{1}{x-\xi+i0} \pm \frac{1}{x+\xi-i0}\right)$$ $$\tilde{\mathcal{H}}_{WN}^{+(-)}(\xi,t) \equiv \sum_{f} Q_{f} c_{V(A)}^{f} \int_{-1}^{1} \frac{dx}{(x-\xi+i0)} \tilde{H}_{f}^{+(-)}(x,\xi,t)$$ $$= \sum_{f} Q_{f} c_{V(A)}^{f} \int_{-1}^{1} dx \ \tilde{H}_{f}(x,\xi,t) \left(\frac{1}{x-\xi+i0} \mp \frac{1}{x+\xi-i0}\right)$$ $$\tilde{\mathcal{E}}_{WN}^{+(-)}(\xi,t) \equiv \sum_{f} Q_{f} c_{V(A)}^{f} \int_{-1}^{1} \frac{dx}{(x-\xi+i0)} \tilde{E}_{f}^{+(-)}(x,\xi,t)$$ $$= \sum_{f} Q_{f} c_{V(A)}^{f} \int_{-1}^{1} dx \ \tilde{E}_{f}(x,\xi,t) \left(\frac{1}{x-\xi+i0} \mp \frac{1}{x+\xi-i0}\right)$$ $$\begin{split} \mathcal{T}_{\text{WC}}^{\mu\nu} &= -\frac{1}{4(p \cdot q)} \Big\{ \Big[\frac{1}{(p \cdot q_2)} (p^{\mu}q_2^{\nu} + p^{\nu}q_2^{\mu}) - g^{\mu\nu} \Big] \Big[\mathcal{H}_{\text{WC}}^{+}(\xi, t) \bar{u}(p_2, s_2) \not q_2 u(p_1, s_1) \\ &+ \mathcal{E}_{\text{WC}}^{+}(\xi, t) \bar{u}(p_2, s_2) \frac{(\not q_2 \not f - \not q_2)}{4M} u(p_1, s_1) - \tilde{H}_{\text{WC}}^{-}(\xi, t) \bar{u}(p_2, s_2) \not q_2 \gamma_5 u(p_1, s_1) \\ &+ \tilde{\mathcal{E}}_{\text{WC}}^{-}(\xi, t) \frac{(q_2 \cdot r)}{2M} \bar{u}(p_2, s_2) \gamma_5 u(p_1, s_1) \Big] + \Big[\frac{1}{(p \cdot q_2)} i \epsilon^{\mu\nu\rho\eta} q_{2\rho} p_{\eta} \Big] \Big[\tilde{H}_{\text{WC}}^{+}(\xi, t) \bar{u}(p_2, s_2) \not q_2 \gamma_5 u(p_1, s_1) \\ &- \tilde{\mathcal{E}}_{\text{WC}}^{+}(\xi, t) \frac{(q_2 \cdot r)}{2M} \bar{u}(p_2, s_2) \gamma_5 u(p_1, s_1) - \mathcal{H}_{\text{WC}}^{-}(\xi, t) \bar{u}(p_2, s_2) \not q_2 u(p_1, s_1) \\ &- \mathcal{E}_{\text{WC}}^{-}(\xi, t) \bar{u}(p_2, s_2) \frac{(\not q_2 \not f - \not f \not q_2)}{4M} u(p_1, s_1) \Big] + \Big[\frac{2}{(p \cdot q_2)} p^{\mu} p^{\nu} \Big] \Big[\mathcal{F}_1(t) \bar{u}(p_2, s_2) \not q_2 u(p_1, s_1) \\ &+ \mathcal{F}_2(t) \bar{u}(p_2, s_2) \frac{(\not q_2 \not f - \not f \not q_2)}{4M} u(p_1, s_1) - \mathcal{G}_A(t) \bar{u}(p_2, s_2) \not q_2 \gamma_5 u(p_1, s_1) + \mathcal{G}_P(t) \frac{(q_2 \cdot r)}{2M} \bar{u}(p_2, s_2) \gamma_5 u(p_1, s_1) \Big] \Big\} \end{split}$$ $$\begin{split} &= \sum_{f,f'} \int_{-1}^{1} dx H_{f'f}(x,\xi,t) \left(\frac{Q_{f'}}{x-\xi+i0} \pm \frac{Q_{f}}{x+\xi-i0} \right) \\ &\mathcal{E}_{WC}^{+(-)}(\xi,t) \equiv \sum_{f,f'} \int_{-1}^{1} \frac{dx}{(x-\xi+i0)} \left[Q_{+(-)} E_{f'f}^{+}(x,\xi,t) + Q_{-(+)} E_{f'f}^{-}(x,\xi,t) \right] \\ &= \sum_{f,f'} \int_{-1}^{1} dx E_{f'f}(x,\xi,t) \left(\frac{Q_{f'}}{x-\xi+i0} \pm \frac{Q_{f}}{x+\xi-i0} \right) \\ &\tilde{H}_{WC}^{+(-)}(\xi,t) \equiv \sum_{f,f'} \int_{-1}^{1} \frac{dx}{(x-\xi+i0)} \left[Q_{+(-)} \tilde{H}_{f'f}^{+}(x,\xi,t) + Q_{-(+)} \tilde{H}_{f'f}^{-}(x,\xi,t) \right] \\ &= \sum_{f,f'} \int_{-1}^{1} dx \tilde{H}_{f'f}(x,\xi,t) \left(\frac{Q_{f'}}{x-\xi+i0} \mp \frac{Q_{f}}{x+\xi-i0} \right) \\ &\tilde{\mathcal{E}}_{WC}^{+(-)}(\xi,t) \equiv \sum_{f,f'} \int_{-1}^{1} \frac{dx}{(x-\xi+i0)} \left[Q_{+(-)} \tilde{E}_{f'f}^{+}(x,\xi,t) + Q_{-(+)} \tilde{E}_{f'f}^{-}(x,\xi,t) \right] \\ &= \sum_{f,f'} \int_{-1}^{1} dx \tilde{E}_{f'f}(x,\xi,t) \left(\frac{Q_{f'}}{x-\xi+i0} \mp \frac{Q_{f}}{x+\xi-i0} \right) \end{split}$$ $\mathcal{H}_{\mathrm{WC}}^{+(-)}(\xi,t) \equiv \sum_{f,f'} \int_{-1}^{1} \frac{dx}{(x-\xi+i0)} \big[Q_{+(-)} H_{f'f}^{+}(x,\xi,t) + Q_{-(+)} H_{f'f}^{-}(x,\xi,t) \big]$ $$\mathcal{F}_{1}(t) \equiv \sum_{f,f'} Q_{-} \int_{-1}^{1} dx \ H_{f'f}^{-}(x,\xi,t) = \sum_{f,f'} (Q_{f'} - Q_{f}) \int_{-1}^{1} dx \ H_{f'f}(x,\xi,t)$$ $$\mathcal{F}_{2}(t) \equiv \sum_{f,f'} Q_{-} \int_{-1}^{1} dx \ E_{f'f}^{-}(x,\xi,t) = \sum_{f,f'} (Q_{f'} - Q_{f}) \int_{-1}^{1} dx \ E_{f'f}(x,\xi,t)$$ $$\mathcal{G}_{A}(t) \equiv \sum_{f,f'} Q_{-} \int_{-1}^{1} dx \ \widetilde{H}_{f'f}^{+}(x,\xi,t) = \sum_{f,f'} (Q_{f'} - Q_{f}) \int_{-1}^{1} dx \ \widetilde{H}_{f'f}(x,\xi,t)$$ $$\mathcal{G}_{P}(t) \equiv \sum_{f,f'} Q_{-} \int_{-1}^{1} dx \ \widetilde{E}_{f'f}^{+}(x,\xi,t) = \sum_{f,f'} (Q_{f'} - Q_{f}) \int_{-1}^{1} dx \ \widetilde{E}_{f'f}(x,\xi,t)$$ ### **Kinematics** Cross section in target rest frame: Kinematically allowed region: $$\omega = 20 \text{ GeV}$$ $$\hat{s} = (p_1 + q_1)^2 \ge 4 \text{ GeV}^2$$ $$Q_1^2 \ge 2.5 \text{ GeV}^2$$ $$\omega = 20 \,\text{GeV}, Q_1^2 = 2.5 \,\text{GeV}^2, x_B = 0.35, y = 0.19$$ (in-plane) $$\phi = 0$$ $\phi = 20.2^{\circ}$ and $\phi' = 25.3^{\circ}$ $$\frac{d^4\sigma}{dx_B dQ_1^2 dt d\varphi} = \frac{1}{32} \frac{1}{(2\pi)^4} \frac{x_B y^2}{Q_1^4} \frac{1}{\sqrt{1 + 4x_B^2 M^2/Q_1^2}} |T|^2$$ $$T = T_C + T_{BH}$$ ### Model No contribution from sea quarks - valence nucleon GPDs $$\left| H_f^+ = H_f^- \equiv H_f^{val}, \widetilde{H}_f^+ = \widetilde{H}_f^- \equiv \widetilde{H}_f^{val}, E_f^+ = E_f^- \equiv E_f^{val}, \widetilde{E}_f^+ = \widetilde{E}_f^- \equiv \widetilde{E}_f^{val} \right|$$ $$f = u, d$$ - Factorized t-dependence driven by corresponding form factors - ullet Dependence on $oldsymbol{\xi}$ only in \widetilde{E}_f - A.V. Radyushkin, Phys. Rev. D58, 114008 (1998). - P.A.M. Guichon and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 41, 125 (1998). - A.V. Belitsky, D. Mueller, and A. Kirchner, Nucl. Phys. B629, 323 (2002). - R.D. Carlitz and J. Kaur, Phys. Rev. Lett. 38, 673 (1977); 38, 1102(E) (1997). - M. Goshtasbpour and G.P. Ramsey, Phys. Rev. D 55, 1244 (1997). ## Scattering Processes Neutrino-proton: measuring pure Compton contribution $$T_{\nu p} = \sqrt{2} |e| G_F \bar{u}(k') \gamma_{\nu} (1 - \gamma_5) u(k) \epsilon_{\mu}^* (q_2) T_{WN}^{\mu \nu}$$ Neutrino-neutron: Bethe-Heitler contamination $$T_{C\nu n} = \sqrt{2} |e| G_F \bar{u}(k') \gamma_{\nu} (1 - \gamma_5) u(k) \epsilon_{\mu}^* (q_2) T_{WC}^{\mu\nu}$$ $$T_{BH\nu n} = \sqrt{2} |e| G_F \epsilon_{\mu}^* (q_2) \bar{u}(k') \left[\frac{\gamma^{\mu} (\not k' + \not q_2) \gamma^{\nu} (1 - \gamma_5)}{(k' + q_2)^2} \right] u(k) \langle p(p_2, s_2) | J_{\nu}^{CC} (0) | n(p_1, s_1) \rangle$$ Isospin symmetry: $\frac{\langle p(p_2, s_2) | \mathcal{O}^{ud\pm}(z|0) | n(p_1, s_1) \rangle}{\langle p(p_2, s_2) | \mathcal{O}^{ud\pm}(z|0) | n(p_1, s_1) \rangle} = \langle p(p_2, s_2) | \mathcal{O}^{u\pm}(z|0) | p(p_1, s_1) \rangle - \langle p(p_2, s_2) | \mathcal{O}^{d\pm}(z|0) | p(p_1, s_1) \rangle }$ *L. Mankiewicz, G. Piller, and T. Weigl, Phys. Rev. D 59, 017501 (1998).* ### Results $\omega = 20 \,\text{GeV}, Q_1^2 = 2.5 \,\text{GeV}^2, x_B = 0.35, y = 0.19, \varphi = 0, |t| < 1 \,\text{GeV}^2$ ### Summary - GPDs provide the most complete and unified description of the internal quark-gluon structure of hadrons, which can be probed through wide variety of both inclusive and exclusive hard (i.e. light-cone dominated) processes. - DVNS is an important tool to complement the study of GPDs in the more familiar electron-induced DVCS. In addition to measuring different combinations and flavor decomposition of GPDs, providing a direct separation of the their valence and sea contents, the process enables one to access the distributions that are nondiagonal in quark flavor, such as those associated with neutron-to-proton transition. - We have derived the twist-2 Compton amplitudes for both weak neutral and weak charged current interactions by means of the light-cone expansion of the current product in coordinate space. Using a simple model for the nucleon GPDs, which only includes the valence quark contribution, we gave prediction for cross sections in the kinematics relevant to future highintensity neutrino experiments. - Unlike the standard electromagnetic DVCS, we find that at small scattering angles the Compton contribution is enhanced relative to the corresponding BH contribution, and hence should make a contamination from BH background less of a problem when extracting the weak DVCS signal. ### Outlook - To use more realistic models for nucleon GPDs, including sea quark effects - To elaborate separately contributions from the plus and minus distributions - To include twist-3 terms in order to apply the formalism at moderate energies ## Appendix Form factors are defined through matrix elements of electromagnetic and weak (neutral and charged) currents between hadronic states. Dirac and Pauli electromagnetic form factors: $$\langle N(p_1, s_1) | J_{EM}^{\mu}(0) | N(p_2, s_2) \rangle = \overline{u}(p_2, s_2) \left[\gamma^{\mu} F_1(t) - i \sigma^{\mu\nu} \frac{r_{\nu}}{2M} F_2(t) \right] u(p_1, s_1)$$ $r \equiv p_1 - p_2, t = r^2$ Dependence on t is clear evidence for extended structure of nucleon. ### Flavor decomposition of form factors and their limiting values: $$\sum_{f} Q_{f} \overline{\psi}_{f} (0) \gamma^{\mu} \psi_{f} (0) \rightarrow F_{1,2}(t) = \sum_{f} Q_{f} F_{1,2f}(t)$$ $$F_1(t=0) = Q_N$$ $F_{1p}(t=0) = 1, F_{1n}(t=0) = 0$ $F_2(t=0) = \kappa_N$ $F_{2p}(t=0) = 1.793, F_{2n}(t=0) = -1.913$ #### Sachs electric and magnetic form factors: $$G_E(t) = F_1(t) + \frac{t}{4M^2} F_2(t)$$ and $G_M(t) = F_1(t) + F_2(t)$ $$G_{Ep}(t=0) = 1 \text{ and } G_{Mp}(t=0) = \mu_p = 2.793$$ $$G_{En}(t=0) = 0 \text{ and } G_{Mn}(t=0) = \mu_n = -1.913$$ Nucleon electromagnetic form factors are measured through elastic electron-nucleon scattering. (one-photon exchange approximation) Parton distribution functions are defined through forward matrix elements of light-like correlation functions (i.e. quark and gluon fields separated by light-like distances). Unpolarized and polarized parton distribution functions: $$\left\langle N(P,S) \middle| \overline{\psi}_{f}(-z/2) \gamma^{\mu} \psi_{f}(z/2) \middle| N(P,S) \right\rangle_{z^{2}=0} = \overline{u}(P,S) \gamma^{\mu} u(P,S) \int_{0}^{1} dx \left[e^{ix(P\cdot z)} f_{N}(x) - e^{-ix(P\cdot z)} \overline{f}_{N}(x) \right]$$ $$\left\langle N(P,S) \middle| \overline{\psi}_{f}(-z/2) \gamma^{\mu} \gamma_{5} \psi_{f}(z/2) \middle| N(P,S) \right\rangle_{z^{2}=0} = \overline{u}(P,S) \gamma^{\mu} \gamma_{5} u(P,S) \int_{0}^{1} dx \left[e^{ix(P\cdot z)} \Delta f_{N}(x) + e^{-ix(P\cdot z)} \Delta \overline{f}_{N}(x) \right]$$ #### Definition of PDFs has form of plane wave decomposition #### Alternatively: $$\int_{0}^{1} dx \left[\dots \right] \to \int_{-1}^{1} dx e^{ix(P \cdot z)} \widetilde{f}_{N}(x) \text{ and } \int_{-1}^{1} dx e^{ix(P \cdot z)} \Delta \widetilde{f}_{N}(x) \text{ with}$$ $$\tilde{f}_{N}(x) = \begin{cases} f_{N}(x) & x > 0 \\ -\bar{f}_{N}(-x) & x < 0 \end{cases}$$ $$\Delta \tilde{f}_N(x) = \begin{cases} \Delta f_N(x) & x > 0 \\ \Delta \bar{f}_N(-x) & x < 0 \end{cases}$$ Intensive study of PDFs in *hard inclusive processes* for last three decades. Deeply inelastic lepton-nucleon scattering (DIS) played key role in revealing quark structure of nucleon. Optical theorem - forward virtual Compton scattering amplitude (VCA). DIS structure functions are expressed by PDFs. In **Bjorken regime**: behavior of forward VCA is dominated by light-like distances. Amplitude factorizes into convolution of perturbatively calculable hard scattering process and process independent matrix elements containing soft nonperturbative information about nucleon structure. Leading contribution: s- and u-channel handbag diagrams $$Q^2 \equiv -q^2$$ and $s \equiv (P+q)^2 \rightarrow \infty$ with $x_B \equiv Q^2/2(P \cdot q)$ finite $$\frac{1}{(xP \pm q)^2 + i\varepsilon} \xrightarrow{\text{Im}} \frac{1}{2(P \cdot q)} \delta(x \mp x_B)$$ Distribution amplitudes are defined through vacuum-to-hadron matrix elements of light-cone operators, and describe hadrons in hard exclusive processes. $$\left\langle 0 \left| \overline{\psi}_{d} \left(-z/2 \right) \gamma^{\mu} \gamma_{5} \psi_{u} \left(z/2 \right) \right| \pi^{+} \left(P \right) \right\rangle_{z^{2} = 0} = i P^{\mu} f_{\pi} \int_{-1}^{1} d\alpha e^{i\alpha (P \cdot z)/2} \varphi_{\pi^{+}} \left(\alpha \right)$$ Transition: $\gamma^* + \gamma \rightarrow \pi^0$ Generalized parton distributions: two implementation of the formalism. $$F_{\zeta}^{f}(X,t)$$ where $0 \le \zeta \equiv r^{+}/P^{+} \le 1$ $$H_f(x,\xi,t)$$ where $0 \le \xi \equiv r^+/2p^+ \le 1$ Variables (X, ζ) and (x, ξ) characterize longitudinal components of partons. $$X = \frac{x + \xi}{1 + \xi} \text{ and } \zeta = \frac{2\xi}{1 + \xi}$$ High energy and high luminosity lepton accelerators combined with large acceptance spectrometers give unique opportunity to perform precision studies. ### QCD factorization is more general - nonforward VCA $$-q_1^2, (p_1 + q_1)^2 \rightarrow \infty, q_2^2 = 0$$ GPDs appear at amplitude level whereas in inclusive processes, amplitude described by PDFs enter through optical theorem at level of cross section. #### Double distributions: Active parton momentum is represented as sum of two components, specifying momentum flow in *s*- and *t*-channels. Superposition of momentum fluxes in two different channels. Double distributions are hybrids between PDFs (with respect to β) and distribution amplitudes (with respect to α). Connection between (α, β) and (x, ξ) is established via $r^+ = 2\xi p^+$ $$x = \beta + \xi \alpha$$ ### Weak virtual Compton amplitude: $$T_{W}^{\mu\nu} = i \int d^{4}x \int d^{4}y \ e^{-iq_{1}\cdot x + iq_{2}\cdot y} \langle N'(p_{2}, s_{2}) | T \{J_{EM}^{\mu}(y) J_{W}^{\nu}(x)\} | N(p_{1}, s_{1}) \rangle$$ $$X \equiv (x+y)/2$$ and $z \equiv y-x$ $$\langle p_2 | J^{\mu}(X) | p_1 \rangle = \langle p_2 | J^{\mu}(0) | p_1 \rangle e^{-i(p_1 - p_2) \cdot X}$$ $$T_W^{\mu\nu} = (2\pi)^4 \, \delta^{(4)} \left(p_1 + q_1 - p_2 - q_2 \right) T_W^{\mu\nu}$$ #### Totally symmetric traceless parts: $$\left[\mathcal{O}_{\eta}^{f\pm}\left(z\left|0\right.\right)\right]_{sym} = \frac{\partial}{\partial z^{\eta}} \int_{0}^{1} d\beta \left[\bar{\psi}_{f}\left(\beta z/2\right) \not z \psi_{f}\left(-\beta z/2\right) \mp \left(z \to -z\right)\right]$$ $$\left[\mathcal{O}_{5\eta}^{f\pm}\left(z\left|0\right.\right)\right]_{sym} = \frac{\partial}{\partial z^{\eta}} \int_{0}^{1} d\beta \left[\bar{\psi}_{f}\left(\beta z/2\right) \not z \gamma_{5} \psi_{f}\left(-\beta z/2\right) \mp \left(z \to -z\right)\right]$$ $$\mathcal{O}^{f\pm}\left(z\left|0\right.\right) \;\equiv\; \left[\bar{\psi}_{f}\left(z/2\right) \not z \psi_{f}\left(-z/2\right) \pm \left(z \to -z\right)\right]$$ $$\mathcal{O}_{5}^{f\pm}\left(z\left|0\right.\right) \;\equiv\; \left[\bar{\psi}_{f}\left(z/2\right) \not z \gamma_{5} \psi_{f}\left(-z/2\right) \pm \left(z \to -z\right)\right]$$ $$\partial_z^2 \left[\mathcal{O}^{f\pm} \left(z | 0 \right) \right]_{twist-2} = 0$$ ### Sudakov (light-cone) decomposition of γ -matrix: $$\gamma^{\mu} = a^{\mu} \not n_1 + b^{\mu} \not n_2 + \gamma^{\mu}_{\perp} \qquad \gamma^{\mu} = \frac{1}{(p \cdot q_2)} (q_2^{\mu} \not p + p^{\mu} \not q_2)$$ #### Symmetry properties: $$H_f^{\pm}(x) = \mp H_f^{\pm}(-x)$$ $$E_f^{\pm}(x) = \mp E_f^{\pm}(-x)$$ $$\tilde{H}_{f}^{\pm}\left(x\right) = \pm \tilde{H}_{f}^{\pm}\left(-x\right)$$ $$\tilde{E}_f^{\pm}(x) = \pm \tilde{E}_f^{\pm}(-x)$$ #### Model: $$H_u^{val}(x,\xi,t) = u_N^{val}(x) F_{1u}(t)/2$$ $$H_d^{val}(x,\xi,t) = d_N^{val}(x) F_{1d}(t)$$ $$E_u^{val}(x,\xi,t) = u_N^{val}(x) F_{2u}(t) / 2$$ $$E_d^{val}(x,\xi,t) = d_N^{val}(x) F_{2d}(t)$$ $$H_u^{val}(x,\xi,t) = u_N^{val}(x) F_{1u}(t) / 2 u_p^{val}(x) = 1.89x^{-0.4} (1-x)^{3.5} (1+6x)$$ $$H_d^{val}(x,\xi,t) = d_N^{val}(x) F_{1d}(t)$$ $d_p^{val}(x) = 0.54x^{-0.6} (1-x)^{4.2} (1+8x)$ $$E_u^{val}(x,\xi,t) = d_N^{val}(x) F_{2u}(t) / 2$$ $$E_d^{val}(x,\xi,t) = d_N^{val}(x) F_{2d}(t)$$ $$G_{Ep}(t) = \frac{G_{Mp}(t)}{1 + \kappa_p} = \frac{G_{Mn}(t)}{\kappa_n} = \left(1 - \frac{t}{\Lambda^2}\right)^{-2} \text{ and } G_{En}(t) = 0$$ $$\Lambda^2 = 0.71 \text{ GeV}^2$$ $$\begin{split} \tilde{H}_{u}^{val}\left(x,\xi,t\right) &= \Delta u_{p}^{val}\left(x\right)\left(1-\frac{t}{m_{A}^{2}}\right)^{-2} \\ \tilde{H}_{d}^{val}\left(x,\xi,t\right) &= \Delta d_{p}^{val}\left(x\right)\left(1-\frac{t}{m_{A}^{2}}\right)^{-2} \end{split}$$ $$\cos \theta_D = [1 + H_0 (1 - x^2) / \sqrt{x}]^{-1}$$ $$H_0 = 0.06$$ $$\tilde{E}_{u}^{val}(x,\xi,t) = \frac{1}{2}F_{\pi}(t)\frac{\theta(|x|<\xi)}{2\xi}\phi_{\pi}\left(\frac{x+\xi}{2\xi}\right) \frac{\phi_{\pi}(u) = 6u(1-u)}{F_{\pi}(t) = 4g_{A}(t=0)M^{2}\left[\frac{1}{(m_{\pi}^{2}-t)/\text{GeV}^{2}} - \frac{1.7}{(1-t/2\text{ GeV}^{2})^{2}}\right]}$$ $$\phi_{\pi}\left(u\right) = 6u\left(1-u\right)$$ $$F_{\pi}(t) = 4g_A(t=0) M^2 \left[\frac{1}{(m_{\pi}^2 - t) / \text{GeV}^2} - \frac{1.7}{(1 - t/2 \text{ GeV}^2)^2} \right]$$