Results from PHENIX

Todd Kempel – Iowa State University

Physics with Quarkonia at RHIC

 χ_c Ψ'

A+A

d+Au collisions

- parton distribution modifications
- charmonium breakup in hadronic matter
 (but requires knowledge of production mechanism)

p+p collisions

- access to production mechanism
- feed down contributions to J/ψ

FPS09

1.69 GeV2

EPS08

Todd Kempel -- Iowa State University

1.2

1.0

0.8

0.6

0.4

0.2

PHENIX was Built to Measure Leptons

Philosophy (initial design):

High rate capability & granularity Good mass resolution & particle ID Sacrifice acceptance

μ+/ μ -Muon Tracking Detector Muon Identifier

 $1.2 < |\eta| < 2.2 (2.4)$ $\Delta \phi = 2 \pi$

 $|\eta| < 0.35$ $\Delta \phi = 2 * (\pi/2)$

π⁰/γ/η
Electromagnetic Calorimeter
π+/π
Drift Chamber
Ring Imaging Cherenkov Counter
e+/eHBD

Charmonium States at PHENIX

Y states

|y| < 0.35

1.2 < |y| < 2.2

Results from p+p collisions

Dilepton continuum at PHENIX

Backgrounds well understood for |y|<0.35 Moderately well understood for 1.2 < |y| < 2.2

J/ψ cross-sections compared to models

1000 Kempei -- 10wa

 $p_{T} (GeV/c^{2})$

J/ψ spin-alignment compared to models

ψ'/ J/ψ ratio in the dielectron channel about 2% (consistent with HERA-B and CDF)

$$J/\psi$$
 from $\psi' = (8.6 \pm 2.5)\%$

world average: (8.1 ± 0.3) % [Faccioli, JHEP 0810:004,2008]

$\chi_c \rightarrow J/\psi + \gamma$

Large Background from π^0 Also contributions from physical sources: $\psi' \to J/\psi + \pi^0 \to e^+e^-\gamma\gamma$

J/ψ from χ_c < 42% (90% CL)

world average (25±5)% [Faccioli, JHEP 0810:004,2008]

Near **future**: *forward* rapidity χ_c study is under way in d+Au and p+p

First Observations of Y from 2006 data

11

Cross section at y~O follows world trend Compatible with STAR measurement.

BR*d σ /dy = 28.2±9.4(stat.)±4.8(syst.)pb, y∈ [-2.2, -1.2] BR*d σ /dy = 31.1±8.7(stat.)±6.2(syst.)pb, y∈ [1.2, 2.2]

$$\left.Brac{d\sigma_\Upsilon}{dy}
ight|_{|y|<0.35}=114^{+46}_{-45}pb$$

Results from d+Au collisions

Revised Fits to 2003 R_{dAu} data

Now account for all systematic errors

PRC 77, 024912 (2008). Erratum: Phys. Rev. C 79, 059901 (2009)

Calculations assume Color Evaporation Model, but different mechanisms correspond to different translation between x and J/ψ p_{τ} and y

2008 Data Provide Better Access

$$R_{cp} = \frac{1}{N_{coll}/N_{coll}^p} \frac{dN/dy}{dN/dy^p}$$
 $p \equiv 60\text{-}88\% \text{ centrality}$

30x more statistics than 2003 run.

Most of systematic errors cancel out in R_{cp} .

Upcoming fits to R_{dA} can better constrain $\sigma_{breakup}$.

05/20/10

Maybe the models aren't complete.

- Shadowing + fixed σ_{breakup} don't match the observed rapidity dependency
- Use d+Au data to extract <u>effective</u> breakup cross section as a function of rapidity to parametrize all the effects that shadowing is missing
- Same trend observed at mid rapidity in E866 and HERA-B data, and at forward rapidity in E866 and PHENIX data

Or maybe it can all be explained by Coherent Scattering (CGC)...

J/ψ production mechanism could be different in hadron-nucleus collisions than in hadron-hadron.

Note: the calculations have since been expanded to have less simplified nuclear geometry and have been applied to R_{AA} as well **Phys.Rev.Lett.102:152301,2009**

Results from A+A collisions

J/ψ R_{AA} vs centrality (N_{part}) in Au+Au and Cu+Cu

Phys. Rev. Lett. 101, 122301 (2008)

 $05/\overline{20}/10$

Data are from 2005 Cu-Cu and 2004 Au-Au. Lines are cold nuclear matter effects extrapolated from 2003 d-Au data

Cu-Cu and Au-Au ratios match well where they overlap.

In Au+Au the suppression is larger than expected from CNM

There is more suppression at forward rapidity than at mid-rapidity, although the difference might be absorbed by CNM

Note: The errors on the CNM error bands on these plots is underestimated (slightly) due to the erratum on slide 14.

Todd Kempel -- Iowa State University

J/ψ R_{AA} over CNM in Cu+Cu and Au+Au

Work by Tony Frawley and Mike Leitch using rapidity dependent breakup cross-section and errors estimated from 2008 data

Difference between mid and forward rapidity measurement is washed out.

Suppression beyond cold nuclear matter effects is observed

Note: We don't measure R_{dCu} – so the Cu+Cu R_{AA} (CNM) has some model dependence

Future Possibilities: Y states from d+Au and A+A collisions

R_{dAu} from $\Upsilon(1S+2S+3S)$

 $R_{dAu} = 0.53\pm0.20(stat.)\pm0.16(sys.), y [1.2, 2.2]$

No measurement available (yet) at mid-rapidity

05/20/10

Todd Kempel -- Io

High Mass di-lepton R_{AA}

Excess over combinatorial background at high mass (m>8GeV/c²) attributed to

- Upsilons
- Open beauty
- Drell-Yan

High mass di-lepton R_{AA} :

R_{AuAu} [8.5,11.5] < 0.64 at 90% C.L. 05/20/10 Todd Kempel -- Iowa St

No measurement available (yet) at forward rapidity

- Quarkonia continues to provide exciting physics in p+p, and it is an important probe in d+Au, and Au+Au.
- PHENIX is able to make contributions through a large number of diverse measurements
- The future holds great promise for increasing our understanding of the J/ ψ and of using χ_c and Υ to enrich our understanding of CNM effects and the QGP.

Backup

σ_{breakup} Fits to 2008 Data

Differences between mid and forward rapidity measurement is washed out.

Suppression beyond cold nuclear matter effects is observed

Using Coherent Scattering (CGC) to describe R_{AA}

sQGP full characterization needs sPHENIX superPHENIX

Ultraperipheral J/ψ (photoproduction)

05/20/10

Number of J/ ψ : 9.9 \pm 4.1 (stat) \pm 1.0 (syst). Todd Kempel -- Iowa State University

J/ψ photoproduction cross-section at y~0: 76 \pm 31 (stat) \pm 15 (syst) μb,