A Fourth Generation at a Muon collider

Gustavo Burdman

FermiLab and University of São Paulo

Muon Collider Workshop, Fermilab, November 10-12 2009

New Physics at the LHC

Discoveries at the LHC:

- New Interactions (new gauge bosons, scalar sectors, ...)
- New Fermions:
 - Vector-like: Little Higgs, KK fermions, ...
 - Chiral: 4th Generation

A Chiral Fourth Generation

Motivation:

Why not?

- 4G with 300 GeV $\lesssim m_4 \lesssim 600$ GeV not excluded by EWPT, if $\Delta m \leq M_W$
- Flavor bounds can be accommodated by suppressed mixings

Why?

- Simplest (dumbest) extension of the standard model
- Fourth generation could be associated to EWSB. Large Yukawas naturally associated with strongly coupled sector.

A Chiral Fourth Generation

Motivation:

Why not?

- 4G with 300 GeV $\lesssim m_4 \lesssim 600$ GeV not excluded by EWPT, if $\Delta m \leq M_W$
- Flavor bounds can be accommodated by suppressed mixings

Why?

- Simplest (dumbest) extension of the standard model
- Fourth generation could be associated to EWSB. Large Yukawas naturally associated with strongly coupled sector.
- Why not ?

Strongly Coupled Heavy Fermions

Heavy Chiral Fermions: strongly coupled to EWSB sector

• Top quark:

$$m_t \simeq v \qquad \Rightarrow \qquad y_t \sim 1$$

• If Heavy Fourth Generation $\Rightarrow y_4 > 1$

Higgs sector is strongly coupled

Natural to assume composite Higgs sector

Fourth Generation may be related to EWSB

EWSB from Fourth Generation Condensation

Breaking the Electroweak Symmetry:

- A Chiral Fourth Generation: Q₄, U_{4R}, D_{4R}, L₄, E_{4R}, N_{4R}
- New strong interaction at the O(1) TeV scale:
 - ullet E.g. Broken gauge symmetry $M\sim TeV$
 - Strongly coupled to 4th gen. $\Rightarrow \langle \bar{F}_4 F_4 \rangle \neq 0$
- Fermion masses: higher dimensional operators like

$$\frac{x_{ij}}{\Lambda^2} \bar{f}_L^i f_R^j \bar{U}_R U_L$$

Fourth Generation in a Warped Extra Dimension

Complete Model of 4G Condensation: (G.B. Da Rold '07)

- Compact extra dimension with AdS metric
- Bulk gauge theory: $SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_X$
- Four generations of SM fermions:
 - UV-localized light SM fermions
 - Q^3 , $t_R \sim \text{IR-localized}$
 - IR-localized 4th Generation

Flavor Violation in AdS₅ Models

KK Gauge Bosons couple stronger to heavier fermions

⇒ Heavier fermions couple strongly to KK gauge bosons

Strongly Coupled Fourth Generation

Generically we have:

- 4G Fermions strongly coupled to O(1) TeV gauge bosons
 - 4G quarks U_4 , D_4 strongly coupled to color-octet (e.g. $G^{(1)}$) \Rightarrow e.g. $\langle \bar{U}_4 U_4 \rangle$ and EWSB
 - 4G leptons N_4 , E_4 strongly coupled to color-singlet O(1) TeV gauge bosons e.g. $\gamma^{(1)}$, $Z^{(1)}$, ...
- A heavy Higgs: $m_h \gtrsim m_4^{
 m dyn.} \simeq 600 \ {
 m GeV}$

Fourth Generation at the LHC

At the LHC: (G.B., Da Rold, Eboli, Haluch, Matheus, '08,'09)

Quarks

- Easy to produce 4G quarks U_4 , D_4 via QCD. Early discovery.
- Not Possible to see color-octet (KK gluon) contribution. Too small/broad.

Leptons

- Contributions from strongly coupled gauge bosons are larger $(\sim 1/3)$
- $\sigma(pp \to N_4 \bar{N}_4 \to e^{\pm} \mu^{\mp} W^+ W^-) \simeq O(\text{few})$ fb. Hard $(\gtrsim 100 \text{ fb}^{-1})$ to see above backgrounds.
- $pp \rightarrow E_4^+ E_4^- \rightarrow W^+ W^- \nu \bar{\nu}$: Larger cross section, but even harder.

The Fourth-Generation at a Muon Collider

Consider $\sqrt{s} = 3 \text{ TeV}$

N₄ pair production

For $m_{N_A} = 300$ GeV:

- $\sigma(\mu^+\mu^- \to N_4\bar{N}_4)_{\rm SM} = 2.7 \text{ fb } (0.3R)$
- Including massive vector bosons with $M_V = 2.5$ TeV $\sigma(\mu^+\mu^- \to N_4\bar{N}_4) = 16$ fb (1.7R)

The Fourth-Generation Leptons at a Muon Collider

N₄ pair production (cont.)

- E.g. Decaying the W's to jets we have (with 20° cut) $\sigma(\mu^+\mu^- \to N_4\bar{N}_4 \to e^\mp\mu^\pm W(jj)W(jj)) = 1.4 \text{ fb } (0.15R)$
- Assuming $\mathcal{L} = 10^{34} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1} = 100 \, \mathrm{fb}^{-1}/\mathrm{year}$ $\Rightarrow O(100) \, \mathrm{events/year}$
- If only the SM contributes, 10's events/year
- Physics backgrounds are manageable

The Fourth-Generation Leptons at a Muon Collider

E_4^{\pm} pair production

- Larger cross section: for $m_{E_4} = 300$ GeV, $\sigma(\mu^+\mu^- \to E_4^+ E_4^-) \simeq 38 fb$
- Assuming $\Delta_m \equiv |m_{E_4} m_{N_4}| < M_W$, 2-body decays dominate over 4G transition $E_4 \leftrightarrow N_4$
- Pure SM contributions:

$$\sigma(\mu^+\mu^- \to E_4^+E_4^-)_{\rm SM} \simeq 4fb$$

The Fourth-Generation Leptons at a Muon Collider

E_4^{\pm} pair production (cont.)

- Assuming both W's decay to jets $\sigma(\mu^+\mu^- \to E_4^+E_4^- \to W(jj)W(jj)\nu\bar{\nu}) \simeq 17fb$
- $\Rightarrow 1000's$ events/year
- Harder backgrounds, no reconstruction of E4

Fourth Generation Quarks

- Even larger cross sections but already seen at LHC E.g. $\sigma(\mu^+\mu^- \to D_4\bar{D}_4 \to t\bar{t}W^+W^-) \simeq 25\,\mathrm{fb}$ ($\simeq 4\,\mathrm{fb}$ if only SM)
- Can we "see" their interaction to the color-octet (KK gluon)
 via threshold effects?

It implies scanning at around $2m_{D_4} \simeq 1 \text{ TeV}$

Summary/Outlook

- Existence of 4th Generation suggests special role in EWSB
- Easy to see 4G at LHC, hard to see new strong interaction
- Also hard to see lepton sector
- Lepton sector and strongly coupled heavy vector bosons at μ collider with $\sqrt{s}=3$ TeV, $100\,{\rm fb}^{-1}/{\rm year}$
- Need serious simulation of physics backgrounds
- Compute threshold effect from color-octet (KK gluon) interaction in quark pair production

