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1. Introduction

Quarkonium in QGP

Heavy quarkonium is an important probe of the properties of a
quark-gluon plasma. [T. Matsui, H. Satz (1986)]
@ In heavy ion collisions — short lived quark-gluon plasma.
@ In the primary collisions heavy quarkonium is created.
@ Depending if it survives the high T it eventually decays (to
muons for instance).
< Description of bound state at T > 0.
@ Muon escape « carry information out of the plasma.
< Spectral function.
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The description of quarkonium bound states at T > 0

Many different theoretical approaches:
@ Potential models

o Heavy quark — non-relativistic
— interaction described by a potential.
@ Successful at T = 0, but how to define a potential at T > 07?

© Perturbation theory

o Heavy quark effective theory
— define the potential as matching coefficient.
@ Convergence of perturbation theory questionable.

© Lattice QCD

o Contains perturbative and non-perturbative physics.
o Need to analytically continue results from Euclidean to real
time.

@ AdS/QCD
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Perturbative potential for heavy quarks

In the heavy quark limit, the potential is given by a Wilson loop of
Euclidean time extend 7 — it:

)
Ce(r,r) = (TrWe(r.n)]) P

i CE(it,r) T
Vool = Teieny m

Static potential

exp(—mpr)

lim Voert(t,r) = —aCr | mp + +/T¢(me)} +0(g*)

t

@ 2xthermal mass correction for heavy quarks.

@ Second term — standard Debye-screened potential.

@ Third imaginary term — heavy quark damping.
[Laine, Philipsen, Romatschke, Tassler (2007); Brambilla, Ghiglieri, Vairo and
Petreczky (2008); Beraudo, Blaizot, Ratti (2008)]
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Quarkonium on the lattice

@ Standard: Compute directly the spectral function
= Needs to analytically continue the Euclidean correlator
(MEM).

@ Potential from its perturbative definition also needs an
analytical continuation.

@ From the position of the first peak of the spectral function —
real part of the potential.

@ Find some Euclidean observable that matches the potential
— Classical observable: "singlet quark-antiquark free energy”.
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. Polyakov loop correlators

The singlet free energy is defined form the Coulomb gauge
Polyakov loop correlator

T
1 A
WC = W<Tr[POPj]>Coulomb B
c { }
0 r

as

\
Fc=—Tlog <W—2C>
P

with the normalization Vp = Nic<Tr[P0]>.

Interesting properties (lattice):
@ Displays good scaling properties (lattice size and spacing).
@ Matches the T = 0 potential in the limit r — 0.

Relation between Fc and Viper?
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Singlet free energy as real part of the potential?

Potential out of the lattice spectral function
@ The position of the first peak — real part of the potential.

@ Width of the first peak — imaginary part.
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[Rothkopf, Hatsuda, Sasaki, 2009]
The real part of the potential matches the free energy.
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Can we learn something from perturbation theory?

We consider a more general set of correlators:

© Singlet free energy in Coulomb gauge:

1
Ve = —=(Tx[PP]) Coutomb B

T
<« Standard quantity measured on the lattice. 0
r

@ The singlet free energy in covariant gauge W¢.

© Cyclic Wilson loop: T
1
Vi = (Tx[P, W5 PEWJT) B

C

< Gauge invariant.
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Leading order perturbation theory

@ The free energy is gauge invariant,

—mpr
e D

Fc = Fc=—aCF
@ It equates the Wilson loop
Ve =Vy.

@ It is equal to the real part of the potential up to some
constant.

Do all these nice properties extend to NLO?
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Perturbation theory calculation at NLO

We calculated these different observables using finite T
perturbation theory at NLO: [YB, M. Laine and M. Vepsilsinen, 2009]
Difficulties:
@ UV divergences:
o N%(Tr[P,PJ]) depends only on g.
= Charge renormalization alone should cancel UV divergences.
@ IR divergences:

o Color electric modes at the scale gT.
= Needs resummation: systematically done from EQCD.

V= [\UQCD - wEQCD]unresummed + [\UEQCD]resummed

o Color magnetic modes at the scale g2 T.
= No prominent role here.

11
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Calculation: One Polyakov loop as example

1
Veloep = [E(Tr[Pr]ﬁ QCD:

+0(g%

2 1 4 2
S EG L G2
2T Ji k 2 Mk Jq

The IR divergent 1/k* and further logarithmic divergences in the
. are treated with EQCD.

12
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EQCD resummation

The Lagrangian of EQCD reads

. - i
Lo =3 Tr[F3)+Tx [Di, Aol + mBTr[A] + ...

The Polyakov loop operator is represented as
. 1, - -
Pe=[1 2]+ ighof 21+ 5 (ighoB)? 2o+ ...+ (g2 FiB°) X+ ...

g3, g* corrections to the Polyakov loop in EQCD:

[wp]EocD:-gch/ ! _g4CF/ |-
2T Jike+m3 2 S (R+md)2 ),

The divergences are regularized and reappear in the mp — 0 limit.

The expression Vp = [[Wp]ocp — [Vpleqe]m,—o + [[Wpleaco] is
finite and contains the correct color electric physics,

13
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NLO results

All quantities W, We, Wy have “problems”:
@ Polyakov loop correlator is not gauge invariant at O(g*).
@ W is finite after charge renormalization but not W¢ nor Wy
@ Ve, W, have a power law tail oc TO‘TQrz
— Gauge artefact since there is a finite screening length in QGP.
@ The gauge invariant Wy decreases like e="P",
@ Perturbation theory breaks down at large r:
[Wclfeln > WclEgep at r> .
However: For rT < 1, V¢ reproduces the T = 0 potential

2 4 ik-r =2 =2
g2Cr g°Cr [e* [2N; (. @2 5\ 1IN,/ [ 31
V(r) = — Tl 2 22
(== +(47r)2/k K2 [ s \"eT3) 3 ("ets
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NLO results for the free energy in the Coulomb gauge

r 4T

20 a2 )]} om0 2men)

Fe(r) = o) Cr exp(—mpr) {1 + a(f) [11Nc <2 i e’ n 1>

T 8Tr2

1 Li2(e—47rTr)
127r? (27r)>T

—|—e2’"D’E1(2mDr) + 1 /Oodx LR In(l - e_4”T’X)
Tr Jq x2  2x4

_ 1 00 1 1 1+e—27rTrx
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+ T exp(—mpr) [2 —In(2mpr) — g
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Comparison with lattice
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Perturbative calculation shows a good convergence and fits lattice
data very well. [Lattice data from Kaczmarek, Karsch, Petreczky, Zantow, 2002]
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4. Conclusion and Outlook

@ The singlet free energy in Coulomb gauge reproduce the
correct Tr — 0 behavior.

@ This observable might be quite close to the real part of the
potential.

@ However shows a non physical 1/r? behavior at large distance
both in perturbation theory and in the lattice data.

= Using the free energy probably overestimates the binding
energy.

@ Perturbation theory seems to converge well.

= Computations for the quarkonium decay from perturbative
potential should be reliable. [YB, Laine, Vepsilsinen, 2007, 2008]

@ Motivation to calculate the perturbative potential to O(g*).
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