Z' Bosons at Present and Future Colliders

Seth Quackenbush

Outline

- Models upon models
- Z' goals
- Old colliders
- LHC
- New colliders
 - ILC
 - CLIC/muon collider

The nature of a Z'

- Many extensions to Standard Model predict a new neutral resonance
- Let's call a Z' spin 1 (usual definition)
- Can narrow properties of Z' Lagrangian using phenomenological arguments:
 - Fermion left-handed doublets should couple the same (would imply/induce Z-Z' mixing)
 - Fermion generation independence (would induce FCNC)

Models upon models

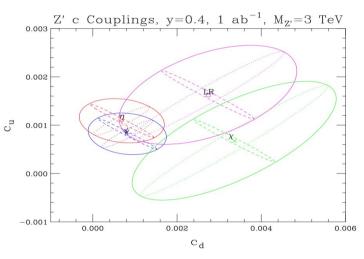
- Two broad categories of models:
 - "Usual models" fit above constraints
 - (Effective) rank-5 GUTS:
 - $E_6 (\psi, \eta)$
 - SO(10) (χ , LR, ALR)
 - Any other consistent set of couplings you want to write down
 - "Unusual models" evade above constraints
 - Little Higgs (extra quantum numbers protect mixing)
 - KK modes (same)
 - Light/heavy (3rd generation not constrained)
 - Technirho (?)
 - ???

What to do with so many models

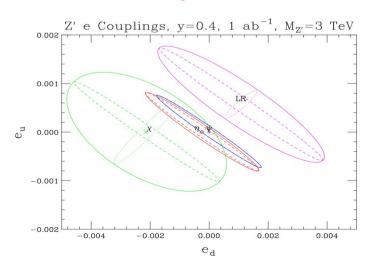
- Finding a resonance is the easy part
 - "If you can't find a Z' at the LHC, you should turn it off."
- Can't check every model against data
- Some models have free parameters (e.g., E₆)
- More model-independent approach needed
- Find Z' couplings to fermions (others?)

Constraints on Z'

- LEP rules out most Z' models to ~1 TeV by indirect search (dileptons)
- Tevatron rules out most Z' models to ~800
 GeV by direct search (dijets)
- Low energy experiments (e.g., E-158) rule out most Z' models to ~1 TeV by dim-6 operators
- Get around these searches with, e.g., very small couplings

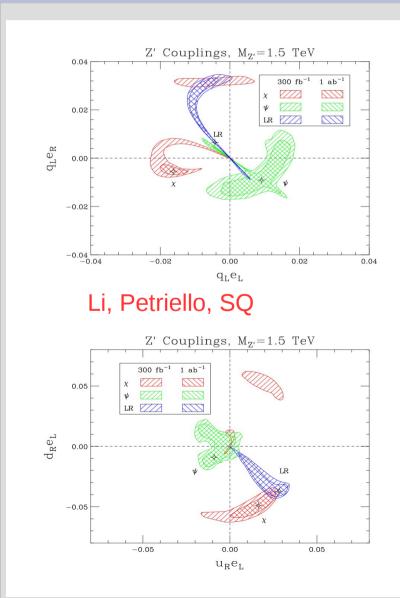

Z' Possibilites

- Group Z' possibilities at future colliders into mass categories:
 - $_{-}$ Light: 1 TeV < M $_{z'}$ < 2 TeV
 - Medium: 2 TeV < M $_{7}$ < 6 TeV
 - $_{-}$ Heavy: 6 TeV < M $_{_{7'}}$ < 15 TeV
 - Other: very unusual scenarios/models


Z' at the LHC

- Z' must be made from quarks here
- QCD buries decays into quarks (tough possibility to see decays into b/t)
- Cleanest signal is dileptons
 - Discover up to ~6 TeV
 - Clean enough to do physics!
 - Get mass ($\Delta M \sim 0.1\% M$)
 - De-convolute B-W shape ($\Delta\Gamma \sim 0.1\%$ M)
 - Begin extracting coupling parameters

Medium Z' at the LHC



Petriello, SQ

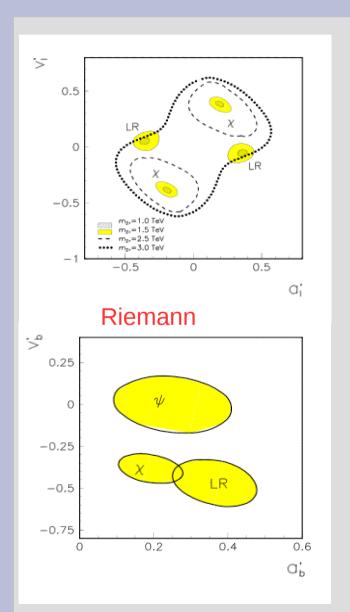
- Only on-peak
 measurements useful
 – F/B, rapidity distributions
- $c_q = (q_L^2 + q_R^2)(e_L^2 + e_R^2)/24\pi\Gamma$ $e_q = (q_L^2 - q_R^2)(e_L^2 - e_R^2)/24\pi\Gamma$
- No sign determination!
- Enough to differentiate/rule out typical models

Light Z' at the LHC

- On + off-peak measurements give signs
- Get width ΔΓ ~ 1 GeV
- Some directions in parameter space determined much better than others
- More than enough to rule out other models
- q X e degeneracy

LHC Drawbacks

- Rapidity/F-B asymmetry measurements sufficient to determine couplings only for 4 free coupling parameters, "usual" models (u_L=d_L)
 - Test other models individually
- Degeneracy in coupling space (can trade q for e) unless lucky in heavy quarks
- Limited precision, poorly measured directions


Lepton colliders

- Deviations in dilepton observables off-peak sufficient to discover Z' up to ~6X c.o.m. energy
 - ILC: discover light, medium Z' if not found at LHC (small coupling to quarks)
 - CLIC/muon collider: discover heavy Z' far past LHC mass range
- If mass known, measure couplings off-peak
 - leptons→leptons + leptons→quarks gives all combinations, no degeneracy, better precision than LHC

Lepton colliders (cont'd)

- To determine individual couplings, need the following:
 - Some way to separate left, right-handed couplings (Forward/backward asymmetry, polarization asymmetry)
 - Differentiation of different final state particles (tags on heavy quarks)

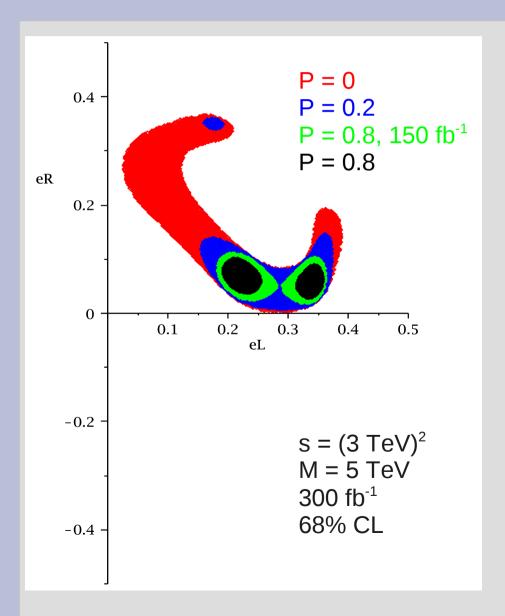
ILC

- Discover Z' if weakly coupled to quarks
- Leptonic couplings welldetermined for light Z'
- Quark coupling extraction depends on lepton extraction, b tagging, c (!) tagging
- In principle can get mass, couplings if not found at LHC (hard) Rizzo

CLIC/Muon collider

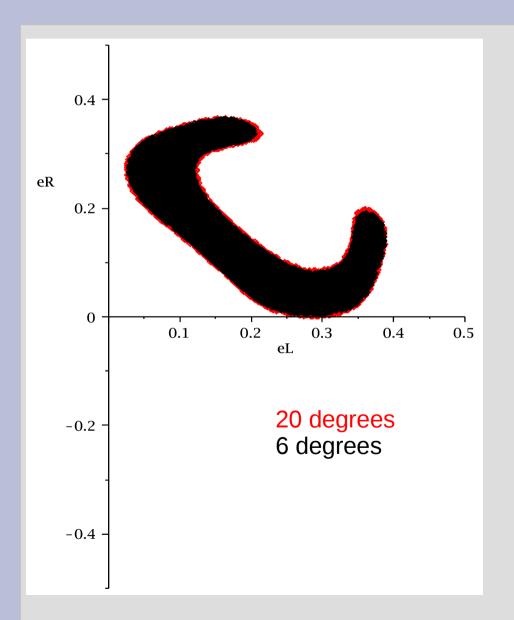
- Scale ILC results with energy
- Light Z': Z' factory?
- Polarization assumed in previous studies, but redundant to angular information
 - Cross check; sort out KK Z', γ'?
 - Is polarization necessary for good results? Is it worth a cut in luminosity? Is "natural" polarization sufficient?

CLIC vs. Muon collider


CLIC

- At least electrons polarized to 80%
- Heavy quark tagging probably easier
- More detector coverage (easier to ID top decays)
- More ISR (easy radiative return to peak)Freitas

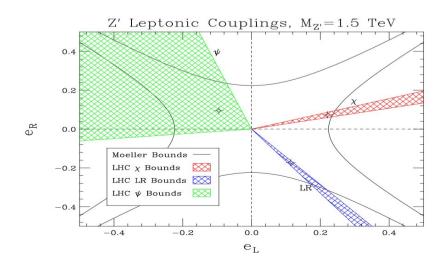
Muon collider

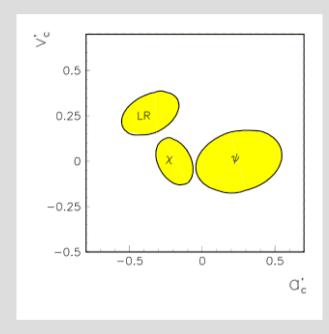

- Probably automatic20% polarization
- Better energy resolution
 - Trace of BW shape
 - More Z' if width very narrow
- Less ISR
- What if Z' doesn't couple to electrons?

The case for polarization

- Off peak, too few events for good F/B separation
- Polarization much more efficient at separating L/R couplings

What about cone angle?


- Angular distribution only handle on quark couplings, leptons if no polarization
- Size of cone doesn't seem to matter


Z' Outlook

- A Z' is only interesting if we find out what it is
- LHC can certainly narrow it down, but still missing information
- Future letpon colliders should be able to measure more parameters, and better
- What kind of collider we need will depend on Z' mass
- More study needed on polarization, heavy quark (incl. top) ID

Bonus Material

