
DIANA IO Update
Brian Bockelman, Zhe Zhang,

for the DIANA team

DIANA - A Reminder
• DIANA/HEP (NSF-ACI #1450323) aims to improve the analysis

infrastructure in HEP.

• This can be accomplished along many routes - improved
collaboration software, statistical tools, interoperability with
other data-intensive ecosystems.

• But one very obvious way to contribute is making ROOT IO
faster!

• Here, we report on the current activities.

• Still have an open position: http://diana-hep.org/pages/
jobs.html. Willing to consider locating at UNL or FNAL.

http://diana-hep.org/pages/jobs.html

A note on collaborating
• (Ignoring the code itself,) It’s tough to get students / collaborators started on ROOT:

• There’s a known set of coding conventions (https://root.cern.ch/coding-conventions)
that are not automatically checked when pull requests are sent. Waste of reviewer
time to have to worry about these (esp. if the reviewer is many timezones away).

• While roottests is useful, there is no CI integration with pull requests. Waste of
reviewer time to double-check integration test results (assuming a sufficiently
simple patch…).

• Better to note integration tests fail when it is a PR than after it has been merged!

• Some simple automation should save everyone’s time and ease the on-ramp of new
contributions!

• When we ran into similar problems with contributing to CVMFS, they ran a subset of
their builds, unit tests, and code convention checks in Travis-CI. Made contributing
much easier: can focus on the code review itself.

https://root.cern.ch/coding-conventions

Current Activities
• Improved compression:

• Testing LZ4: actually, two groups are doing this. In practice, not yet a
huge improvement over ZLIB-1 (possibly due to smaller buffer sizes in
ROOT?).

• “Random Access Compression” (RAC): Allows access to a single event
from a buffer. Works well for sparse reads with many events per buffer.

• “External Compression”: Simple comparisons of performance when
compression is done in the TFile layer, unaware of TTree-level knowledge.

• All three items are going to be written up in a CHEP paper.

• Probably RAC will be worth merging: others are more about documenting
the phase space.

Current Activities
• Porting of CMS’s “lazy-download” (called “buffered read”).

• Rounds reads up to 128MB chunks that are then buffered on local
temporary disk. Very useful for high-latency, non-repetitive (cache-
unfriendly) analysis.

• Pull request posted; tests pass; new test added.

• Porting of CMS’s improvements to TTreeCache for handling of cache misses.

• Stalled out at about 50-75% complete.

• Migration of serialization code from big endian to little endian.

• Pull request posted; tests pass.

• Some work left to validate schema evolution; added new member to TKey.

Where we are going…
• The end-goal of this work is to do zero-copy IO for sufficiently

simple objects (Plain Ol’ C structs or similar).

• I.e., switch of endian-ness likely has no performance effect
unless we can reduce memory copies.

• Intermediate work is to remove unnecessary memory copy of
TTreeCache for decompression.

• Aim is to give user a cluster-at-a-time instead of event-at-a-time
per top-level branch.

• When combined with a lambda/functor interface, I hope we’d
even get the compiler to do vectorization of IO.

Working with Community
• We’d like to update the “standard set of test files” from each

experiment.

• Seems most of the tested files correspond to LHC Run I: would
like to see updates to Run II.

• And gather some samples from analysis / ntuples, not just
framework files.

• Particularly, CMS will require extra effort to either port-or-remove
custom serialization code.

• Would also like to get some sample files from neutrino community.

• Goal is to be able to track IO performance changes across versions.

