
James Amundson
LArSoft Tools and Technology Workshop 2017
2017-06-20

Spack and SpackDev Build System

• Background
– Spack and SpackDev are not

one-for-one replacements for
existing tools

• Spack
• SpackDev
• Status/issues
• Tutorial

What are you doing and why?

6/20/17 James Amundson | Spack and SpackDev2

• Consider a set of toy packages with dependencies

• corge package
– provides corgegator executable

• uses libcorge
• uses libquux (from quux package)

– uses libgarply (from garply package)

Background from the world outside of Fermilab

6/20/17 James Amundson | Spack and SpackDev3

• Install as a system package (Scientific Linux [Ubuntu])
• Standard tools: distribution specific: rpm [dkpg], yum [apt]
• packages: corge, quux and garply (rpm, [dpkg])
• dependency management + package retrieval: yum [apt]

– yum install corge (also installs quux and garply)
• user environment:

– corgegator in /usr/bin (in default PATH)
– libraries in /usr/lib (in default system library path)
– nothing more to do; just type corgegator

System packages

6/20/17 James Amundson | Spack and SpackDev4

• Linux distributions do not have tools for this, in general
• Standard tools: trained monkeys
• staging: download corge source package (trained monkey)
• dependency management: determine dependencies and install

(recursive trained monkey)
• configuration: point corge at dependencies

– e.g., cmake or ./configure (trained monkey)
• compile
• install in non-system directory
• user environment:

– need to add corge executable directory to PATH
– need to add corge library directory to LD_LIBRARY_PATH
– likewise for dependencies (trained monkey should get started…)

Install multiple versions, variants, etc.

6/20/17 James Amundson | Spack and SpackDev5

• In case you haven’t figured it out, you are the monkey in this
scenario

Monkey hate package management

6/20/17 James Amundson | Spack and SpackDev6

• pullProducts + ups + cetbuildtools + mrb
• package retrieval: pullProducts
• packaging + dependency management + user environment:

ups
• configuration + build: cetbuildtools

– cetbuildtools depends on ups
• staging: mrb

• This is only a rough picture of the roles played by various
tools

Fermilab alternative to trained monkeys

6/20/17 James Amundson | Spack and SpackDev7

• Many complaints about the build system
– We won’t get into that here

• Some other issues
– pullProducts

• very centralized (users cannot easily set up new distributions)
– ups

• Fermilab specific
• Hard to google (curse you, United Parcel Service)
• Fermilab has to maintain it
• Few packages available
• Non-trivial to create new packages
• Difficult user interface

– familiar, though
• Stockholm syndrome?

• Leads to very complicated user environment
• OSX no longer fully supports "LD_LIBRARY_PATH" (i.e.,

DYLD_LIBRARY_PATH)
• RPATH is an alternative to "LD_LIBRARY_PATH”

– eliminates dependency on user environment
• simplification cannot be overestimated

Why change?

6/20/17 James Amundson | Spack and SpackDev8

• Spack is a package manager designed to handle multiple
versions and variants
– https://spack.io/
– https://github.com/LLNL/spack

• Spack has an active community of mostly non-HEP, but
mostly scientific, developers

Spack

6/20/17 James Amundson | Spack and SpackDev9

now	154now	6,403

• Spack is well documented
– http://spack.readthedocs.io/en/latest/
– Spack is now on Slack

• Spack already contains many packages
– spack list | wc
1470 1470 13938 (now: 1550)

• Spack has a friendly user interface
– spack --help
– spack list --help

• Spack packages are easy to create and understand
– try

spack edit eigen
• Spack gives us RPATH for “free”

Spack, cont.

6/20/17 James Amundson | Spack and SpackDev10

The Spack Slack is a
shack where you can talk
smack about a stack of

Spack snacks!

• Spack has a rigorous model for multiple versions, compilers
and variants
– Values consistency over reuse
– More on this later

• Spack allows the user to specify which system (or other)
packages to use instead of Spack-compiled versions
– Details go in ~/.spack/<platform>/packages.yaml

• Can also specify preferences for, e.g., compilers
packages:
 all:

compiler: [clang@8.1.0-apple, gcc@7.1.0]
 cmake:

paths:
cmake@3.8.2: /usr/local/bin/cmake

buildable: False

Spack features

6/20/17 James Amundson | Spack and SpackDev11

• Environment handling is configurable
– Default is “environment modules”

• old, Tcl-based
– Lmod

• newer, more rigorous, Lua-based
– Adding ups is an option

• Spack internally uses compiler wrappers to add automatic
support for RPATH

• Environment handling is much simpler because of the
extensive use of RPATH

More Spack features

6/20/17 James Amundson | Spack and SpackDev12

• spack buildcache
– Fetches and installs pre-compiled binaries
– Performs relocations utilizing patchelf (Linux) or

install_name_tools (OSX)
– Contributions from Benedikt Hegner, Patrick Gartung, JFA

• SpackDev support
– Minor behind-the-scenes additions

• Mostly to export information
• Automatic system package discovery for packages.yaml

– Not yet implemented
• A stable Spack branch

– Our needs for stability differ from others in the community
– No long-term divergence

Local Spack features

6/20/17 James Amundson | Spack and SpackDev13

Spack versions and configurations

6/20/17 James Amundson | Spack and SpackDev14

Dependencies can be customized

• spack spec

Spack dependencies

6/20/17 James Amundson | Spack and SpackDev15

Spack spec with dependencies

6/20/17 James Amundson | Spack and SpackDev16

• Spack handles packaging, dependency management,
package retrieval and package installation
– It has hooks to user environment tools

• SpackDev handles developing packages with dependencies
– Uses Spack for packaging and dependency management
– Builds packages just like Spack does

• configuration
• RPATH handling

– SpackDev sets up a build area, then gets out of the way
• Build with make and/or ninja
• No environment variables (no ”setup”)
• Transparent

– Spack functionality provided by readable shell scripts

SpackDev

6/20/17 James Amundson | Spack and SpackDev17

• SpackDev is not very complicated

• SpackDev handles dependency installation, staging,
configuration and build area creation
– not quite in that order

SpackDev, cont.

6/20/17 James Amundson | Spack and SpackDev18

• SpackDev will build intermediate dependencies

SpackDev, still cont.

6/20/17 James Amundson | Spack and SpackDev19

• SpackDev is behind schedule
– Planned to give a full demo here
– Only going to explore spack functionality

• Delays are because of me

Learn from our mistakes
• Project managers

– Do not rely on your department head to accomplish a long-term
project

• Department heads
– Do not commit yourself to a long-term development project

• Restructuring SpackDev development to remove me as a
stumbling block

Status

6/20/17 James Amundson | Spack and SpackDev20

• Binary package distribution (buildcache) is in place, but
needs refinement
– Cannot query what is available
– Likely to get wrong variant -> binary package not found

• Automated support for system packages is necessary
– We have a plan, but not an implementation
– Without it “spack install lmod” will install 36 dependent

packages, including perl, tar (!) and git.
• Full support for building art and LArSoft stacks without UPS is

underway
– Needs completion and testing

• Need to refine the user experience

What needs to be done

6/20/17 James Amundson | Spack and SpackDev21

• https://github.com/amundson/spackdev-bootstrap

• Checks out Spack
• Checks out SpackDev
• Creates setup script

– Adds spack to path
– Adds spack shell function

• optional for spack
– Adds spackdev to path

Spackdev-bootstrap

6/20/17 James Amundson | Spack and SpackDev22

• Spack commands are like git commands
– spack command [arguments]

• Everything accepts a help argument
– spack –help
– spack list –help

• Some spack commands (try with –help first)
– spack find
– spack list
– spack compiler list
– spack edit <package>

• The Spack documentation site contains a full tutorial
– http://spack.readthedocs.io/en/latest/tutorial.html

Exploring Spack

6/20/17 James Amundson | Spack and SpackDev23

• spack list
• spack find
• spack install zlib
• spack find (after installing zlib)
• mkdir foo; cd foo; spackdev init –no-deps garply
• mkdir bar; cd bar; spackdev init –no-deps –no-stage garply

corge
• spack install corge

– Will build cmake and dependents – expect to wait over 10
minutes

Things to try

6/20/17 James Amundson | Spack and SpackDev24

