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Outline … from the Workshop Charge
• “YBCO, Bi2212 … what needs to be improved”

– Are there pathways for improvements?
• Quenching … “What are the quench characteristics? … How quickly 

can we detect?”

• Detection  beyond voltage!
• Enhanced propagation  3D normal zones!
• Understand failure  in order to prevent it

• Conclusions
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“YBCO, Bi2212, … what needs to be improved?”
• Bi2212 (>22 yrs of PIT)

– Is porosity intrinsic to PIT?
– Are non-Bi2212 phases 

intrinsic to peritectic melting?
– Narrow temperature window 

challenge in large systems
– Lack of strain tolerance

• Are 100%-dense, 100%-phase 
pure filaments the answer?

• AgX needs a better “X”
– Lack of powder source

• Magnetization
• Quench challenges

• YBCO (>15 yrs of CCs)
– Can we manage the high Jc?

• Very different J(x,y) 
• Particularly in light of drop-outs

– High Je cable? What price? 
– Can high current cable bend? 
– Joining (conductors & cables) 

• Magnetization
• Quench challenges
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An ignored challenge for HTS conductors

1969: Filamentary composite wires
• Low Magnetization

needed where field quality is important, eg accelerator magnets, NMR spectrometers 
• Twisting is essential

untwisted 
filaments are 
magnetically 
coupled and 
behave together 
like a solid wire

twisted 
filaments are 
magnetically 
decoupled and 
behave like 
separate 
entities

B
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Martin Wilson, MT-22, 2011:

Note the Bi2212 
microstructure



Two aspects to quench protection
• Detection 

– while there’s still time to act
– without false positives

• Action 
– before conductor is degraded 
– must know causes and onsets of degradation

• Can high field magnets survive a high energy (density) quench?
• Degradation likely very different between REBCO and Bi2212 

• These are two distinct yet intertwined topics
• Core problems are slow propagation and ceramic carrier
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Does high field improve propagation?

L. Ye et al., to be submitted; funded by the VHFSMC



No, it doesn’t

L. Ye et al., to be submitted; funded by the VHFSMC



New approaches to address propagation
• Optical fiber based sensors to monitor (almost) everything 

… to improve detection
• Thermally conducting electrical insulation ... to improve 

propagation
• New paradigm: HTS magnets become even more stable 

AND have a very different “quench signature” that 
improve detection

• Ultimately - can we have spherical normal zones?
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• Proof-of-concepts have succeeded for Rayleigh backscattering & fiber 
Bragg grating detection

• Rayleigh backscattering offers a fully distributed sensor w/impressive 
spatial resolution

• Integration into a magnet system on-going

• HTS-compatible metallic and/or oxide based coatings will improve 
sensitivity

• Spatial-temporal resolution trade-off must be optimized; 
enormous volume of data and real-time data analysis becomes 
limiting issue… but what does quench detection require?

Fiber optic sensing (quench detection, …)
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 Accurate, hierarchically built and experimentally validated
 Multiscale– from tape-layer scale to device-scale
 m-scale tape model includes all components of a YBCO coated 

conductor in real dimensions

W.K. Chan and J. Schwartz, IEEE Transactions on Applied Superconductivity (in press 2012)

Experimental coil

Multilayer tape model
m-scale tape model

Multiscale coil model

To understand resolution trade-offs for 
detection … use multi-scale modeling
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 Unpredictable heat disturbance energy (QE) dictates T(x,t) and 
V(x,t) quench patterns
 Common voltage/resistance-based detection schemes trace these 

quench patterns to avoid false positives
 Rough, based on global properties detected over sparsely located taps
 Unable to locate fault position accurately

* Same patterns for voltage

Problems in Conventional Quench Detection
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Different quench patterns due to different disturbance energy



 Rayleigh scattering based optical fiber sensing
 Safe, immune to electromagnetic interferences – a problem in voltage-based detection.
 Shifts in frequency spectra of input pulses translate into temperature variations.

 Continuous spatial temperature profiling over the entire length of the winding 
 Complete temperature details at any location.

 Allow simple, accurate and timely quench detection.
 Allow fault location to be identified.

 Key to apply technology successfully:
 Capture and process the backscattered data with sufficient spatial and temporal 

resolutions on fast enough data acquisition and processing (DAQ) technology.
 Finer resolutions mean higher DAQ cost.

 Goal: First find proper DAQ technology that matches coil characteristics; then find proper 
spatial and temporal resolutions for efficient and safe detection. 

Temperature profiles on all turns are observable. True hot spot can be located.

Distributed sensing
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 Temperature and its gradients (dT/dt, dT/dx) subject to complicated quench patterns 
dictated by unknown disturbance energy.
 No definable properties to characterize resolution requirements
 As in voltage-based detection, need to trace dynamics of quench patterns

 Minimum Propagation Zone (MPZ) has lower/upper (for finite-length disturbance) bounds
 Intrinsic property of a coil. Estimated via simulations.
 Used as pivotal parameter to define the resolutions.
 Once a normal zone >= MPZ, it never shrinks and quench is always warranted.

 No need to trace quench pattern -> simple and fast quench detection.
 Idea: Fit DAQ technology into coil’s safe zone. Capture MPZ with fine enough resolutions.

Diagram used to find
a proper DAQ system
and the spatial &
temporal resolutions

Determining Spatial and Temporal Resolutions

13

DAQ’s curve



 Realized by Raleigh scattering based distributed temperature sensing
 No need to trace the quench patterns to avoid false positives

A conceptual detection algorithm based on distributed temperature sensing:

Estimate upper-bound MPZ (for finite-length heat source)
Loop

Scan for rising T, with spatial resolution ∆x and temporal resolution ∆t
If found 

Search for true hot-spot location
If found

Loop 
Estimate normal zone size
If normal zone size >= MPZ + δx (δx for safe margin)
then flag ‘Quench Detected’ and activate quench protection

Towards a fast, reliable quench detection method
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Thermally conducting electrical insulator
NCSU & nGimat jointly developing a thin oxide coating 
see Hunt talk tomorrow for details…

• Chemically compatible with Bi2212 – Ic unchanged; leakage not 
catastrophic

• Improved fill factor for both Bi2212 and REBCO

Coating on Bi2212 after 
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J. Schwartz et al., to be submitted15



How do HTS conductors fail (during a 
quench or otherwise)?

Localized strain 
versus temperature 
during a YBCO 
quench
Delamination risk is 
real

WK Chan, in progress, NCSU

200X in strain
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• Bi2212 failure driven by defect-dominated microstructure 
– Behavior is typical of ceramics, following Weibull statistics

• YBCO CC substrates are mechanical strong and CC is strain 
tolerant, but suffer from delamination
– Delamination CAN be quench-initiated



Quench-related degradation… 
delamination and pre-existing defects
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H. Song et al, Acta Materialia, submitted

Dendritic flux penetration is evidence of Ag 
delamination



Pre-existing defects  very high local temperature and 
degradation … due in part to high Jc in YBCO layer
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Becoming a “what-if” computational tool
“Variables” can include microstructure, AgX properties, 

fill factor, filament size, …

Quang Le, NCSU

Peridynamic modeling of Bi2212 
microstructure/micromechanics
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X. Wang et al., J. Applied Physics 2007

Multiscale model of YBCO quenching… affords “what if?” 
conductor engineering

W. K. Chan et al., IEEE Transactions on Applied Superconductivity, 20(6) 2370-2380 (2010) 
W. K. Chan and J. Schwartz, IEEE Transactions on Applied Superconductivity 21(6) (2011)20



Conclusions
• Bi2212 has made great strides, but has significant 

remaining challenges .. May require significantly new 
approaches 

• Quench protection also requires new approaches… which 
appear to be forthcoming 

• We have a ways to go in materials and magnet engineering, 
and a great opportunity to blur the boundary between them 
via integration of computation & experimentation
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