Key Obstacles to Bi2212 and REBCO Coils, Including but Not Exclusively Quenching

Justin Schwartz
Department of Materials Science and Engineering
North Carolina State University

Research supported by AFRL & DoE (w/Supercon, Muons Inc, nGimat & Grid Logic)

Workshop on High Temperature Superconducting Magnets for Muon Colliders

WARTZ GROUP

May 30, 2012

Outline ... from the Workshop Charge

- "YBCO, Bi2212 ... what needs to be improved"
 - Are there pathways for improvements?
- Quenching ... "What are the quench characteristics? ... How quickly can we detect?"
- Detection → beyond voltage!
- Enhanced propagation → 3D normal zones!
- Understand failure → in order to prevent it
- Conclusions

"YBCO, Bi2212, ... what needs to be improved?"

- Bi2212 (>22 yrs of PIT)
 - Is porosity intrinsic to PIT?
 - Are non-Bi2212 phases intrinsic to peritectic melting?
 - Narrow temperature window challenge in large systems
 - Lack of strain tolerance
 - Are 100%-dense, 100%-phase pure filaments the answer?
 - AgX needs a better "X"
 - Lack of powder source
- Magnetization
- Quench challenges

- YBCO (>15 yrs of CCs)
 - Can we manage the high J_c?
 - Very different J(x,y)
 - Particularly in light of drop-outs
 - High J_e cable? What price?
 - Can high current cable bend?
 - Joining (conductors & cables)

- Magnetization
- Quench challenges

An *ignored challenge* for HTS conductors

Martin Wilson, MT-22, 2011:

1969: Filamentary composite wires Low Magnetization

needed where field quality is important, eg accelerator magnets, NMR spectrometers

Twisting is essential

untwisted filaments are magnetically coupled and behave together like a solid wire

twisted filaments are magnetically decoupled and behave like separate entities

Note the Bi2212 microstructure

Two aspects to quench protection

- Detection
 - while there's still time to act.
 - without false positives
- Action
 - before conductor is degraded
 - must know causes and onsets of degradation
- Can high field magnets survive a high energy (density) quench?
- Degradation likely very different between REBCO and Bi2212
- These are two distinct yet intertwined topics
- Core problems are slow propagation and ceramic carrier

Does high field improve propagation?

L. Ye et al., to be submitted; funded by the VHFSMC

No, it doesn't

New approaches to address propagation

- Optical fiber based sensors to monitor (almost) everything
 ... to improve detection
- Thermally conducting electrical insulation ... to improve propagation
 - New paradigm: HTS magnets become even more stable AND have a very different "quench signature" that improve detection
 - Ultimately can we have spherical normal zones?

Fiber optic sensing (quench detection, ε, ...)

- Proof-of-concepts have succeeded for Rayleigh backscattering & fiber Bragg grating detection
- Rayleigh backscattering offers a fully distributed sensor w/impressive spatial resolution
- Integration into a magnet system on-going
- HTS-compatible metallic and/or oxide based coatings will improve sensitivity
- Spatial-temporal resolution trade-off must be optimized; enormous volume of data and real-time data analysis becomes limiting issue... but what does quench detection require?

NC STATE UNIVERSITY To understand resolution trade-offs for detection ... use multi-scale modeling

0.9

0.9

- Multiscale- from tape-layer scale to device-scale
- µm-scale tape model includes all components of a YBCO coated conductor in real dimensions

0.5

- **-** VL_exp

0.7

Problems in Conventional Quench Detection

Different quench patterns due to different disturbance energy

- Unpredictable heat disturbance energy (QE) dictates T(x,t) and V(x,t) quench patterns
- Common voltage/resistance-based detection schemes trace these quench patterns to avoid false positives
 - Rough, based on global properties detected over sparsely located taps
 - Unable to locate fault position accurately

Distributed sensing

Temperature profiles on all turns are observable. True hot spot can be located.

- Rayleigh scattering based optical fiber sensing
 - Safe, immune to electromagnetic interferences a problem in voltage-based detection.
 - Shifts in frequency spectra of input pulses translate into temperature variations.
- Continuous spatial temperature profiling over the entire length of the winding
- Complete temperature details at any location.
 - Allow simple, accurate and timely quench detection.
 - Allow fault location to be identified.
- Key to apply technology successfully:
 - Capture and process the backscattered data with sufficient spatial and temporal resolutions on fast enough data acquisition and processing (DAQ) technology.
 - Finer resolutions mean higher DAQ cost.
- Goal: First find proper DAQ technology that matches coil characteristics; then find proper spatial and temporal resolutions for efficient and safe detection.

Determining Spatial and Temporal Resolutions

Diagram used to find a proper DAQ system and the spatial & temporal resolutions

- Temperature and its gradients (dT/dt, dT/dx) subject to complicate quench patterns dictated by unknown disturbance energy.
 - No definable properties to characterize resolution requirements
 - As in voltage-based detection, need to trace dynamics of quench patterns
- Minimum Propagation Zone (MPZ) has lower/upper (for finite-length disturbance) bounds
 - Intrinsic property of a coil. Estimated via simulations.
 - Used as pivotal parameter to define the resolutions.
 - Once a normal zone >= MPZ, it never shrinks and quench is always warranted.
 - No need to trace quench pattern -> simple and fast quench detection.
- Idea: Fit DAQ technology into coil's safe zone. Capture MPZ with fine enough resolutions.

13

Towards a fast, reliable quench detection method

A conceptual detection algorithm based on distributed temperature sensing: Estimate upper-bound MPZ (for finite-length heat source) Loop Scan for rising T, with spatial resolution Δx and temporal resolution Δt If found Search for true hot-spot location If found Loop Estimate normal zone size If normal zone size >= MPZ + δx (δx for safe margin) then flag 'Quench Detected' and activate quench protection

- Realized by Raleigh scattering based distributed temperature sensing
- No need to trace the quench patterns to avoid false positives

Thermally conducting electrical insulator

NCSU & nGimat jointly developing a thin oxide coating see Hunt talk tomorrow for details...

Chemically compatible with Bi2212 – I_c unchanged; leakage not catastrophic

Improved fill factor for both Bi2212 and REBCO

275% increase in NZPV

J. Schwartz et al., to be submitted⁵

Department of Materials Science and Engineering

How do HTS conductors fail (during a quench or otherwise)?

- Bi2212 failure driven by defect-dominated microstructure
 - Behavior is typical of ceramics, following Weibull statistics
- YBCO CC substrates are mechanical strong and CC is strain tolerant, but suffer from delamination
 - Delamination CAN be quench-initiated

Localized strain
versus temperature
during a YBCO
quench
→ Delamination risk is

WK Chan, in progress, NCSU₁₆

real

Quench-related degradation... delamination and pre-existing defects

Dendritic flux penetration is evidence of Ag delamination

H. Song et al, Acta Materialia, submitted

Pre-existing defects \rightarrow very high local temperature and degradation ... due in part to high J_c in YBCO layer

Becoming a "what-if" computational tool

"Variables" can include microstructure, AgX properties, fill factor, filament size, ...

Multiscale model of YBCO quenching... affords "what if?" conductor engineering

	Δα (%)	$NZPV$ $\Delta NZPV$ (%) $\Delta NZPV/\Delta \alpha$	$T_{ m peak} \ \Delta T_{peak} (\%) \ \Delta T_{peak} / \Delta lpha$	MQE ΔQ (%) $\Delta Q/\Delta \alpha$
Case I: increased YBCO thickness	+100%	+110.9% +1.11	+57.5% +0.58	-25% -0.25
Case II: reduced Cu thickness	-32%	+27.0% -0.84	+31.1% -0.97	-29.9% +0.93
Case III: increased Cu thickness	+35%	-17.4% -0.50	-16.1% -0.46	+44.9% +1.28
Case IV: Ni replaced Hastelloy	$+1.8 \times 10^{4} \% (\sigma)$ $+2.5 \times 10^{3} \% (\kappa)$	-4.2% -0.00023	-13.1% -0.00071	+32.3% +0.0018
Case V: brass replaced Cu stabilizer	-90% (σ) -83.3% (κ)	+73.7% -0.82	+118.0% -1.31	-69.9% +0.78
Case VI: decreased σ_{Ag}	-99.995%	+7.5% -0.08	-7.7% +0.077	-5.4% +0.054
Case VII: increased σ_b & κ_b	$10^{7}\% (\sigma_{b})$ $3x10^{4}\% (\kappa_{b})$	+0.5% -5x10 ⁻⁸	+0.08% +8x10 ⁻⁹	-2.1% -2.1x10 ⁻⁷

W. K. Chan et al., *IEEE Transactions on Applied Superconductivity,* **20**(6) 2370-2380 (2010)
W. K. Chan and J. Schwartz, *IEEE Transactions on Applied Superconductivity* **21**(6) (201½)
CHWARTZ GROUP
X. Wang et al., J. Applied Physics 2007
Department of Materials Science and Engineering

Conclusions

- Bi2212 has made great strides, but has significant remaining challenges.. May require significantly new approaches
- Quench protection also requires new approaches... which appear to be forthcoming
- We have a ways to go in materials and magnet engineering, and a great opportunity to blur the boundary between them via integration of computation & experimentation

