

Fermilab Users' Meeting 20069

URA thesis award 2009:

Inclusive jet cross section measurement at DO

Mikko Voutilainen CFRN

For work done with:

University of Nebraska-Lincoln Nebraska
Lincoln Helsinki Institute of Physics CEA Saclay

For DSc/PhD from:

Helsinki University of Technology Universite de Paris-Sud 11 (Orsay)

Proton structure

 Proton consist of three valence quarks, up-up-down (uud) and antiproton of three antiquarks (uud) bound together by a sea of gluons (g) and virtual quark-antiquark pairs (uu, dd, ssetc.)

- Higher energies resolve finer detail, and Tevatron's energies are currently the highest available (1.96 TeV)
- Different final states give access to different aspects; inclusive jets look at big picture and can search beyond standard model

Proton Structure

- What can we learn by measuring jets?
 - Distribution of constituents in protons and antiprotons, called partons
 - * Nature of the basic interaction between quarks and gluons
 - * Find quark substructure?

Proton parton distribution functions

x: fraction of proton momentum carried by individual parton f(x,Q2): probability of finding parton with momentum fraction x in interval dx

Event schematic

Jet is a spray of particles coming from hard interaction

Jets are formed by collisions of partons (quarks and gluons) from

- Parton distributions
 - * hadron collider is really a broad-band quark and gluon collider
 - both the initial and final states can be colored and radiate gluons
- Underlying event from proton remnants

Quantum chromodynamics

- Quantum chromodynamics is calculable using perturbation theory (Feynman diagrams) at high $p_T \Rightarrow$ hard scatter
- Standard is next-to-leading-order (NLO), some NNLO available

DO kinematic range

DO, CDF

HERA was an electron-proton collider in DESY research center in Hamburg, Germany

- We are complementary to HERA and fixed target experiments
- Tevatron inclusive jets
 best to constrain the
 high-x gluon distribution

Quark substructure

- Run I legacy: significant freedom for high-x gluon PDF
- Once the high-x gluon PDF is nailed down we can search for quark substructure
- Important measurement to be performed
- 1) at low rapidities: sensitive to PDF/quark substructure
- 2) in wide range of rapidity: at high y, sensitive to PDF
- One single measurement is sensitive to both effects

June 3, 2009

What is so cool about this

- Inclusive jet cross section spans an impressive eight orders of magnitude
- ...and reaches the highest
 energies ever created in a lab
- Full measurement is a collage of seven different triggers
- Pure data measurement, no theoretical models involved
- Open to new physics at high energy

Highest p_T jet

- 3D view of the event that contains the jet with highest transverse momentum in Run IIa
- Jets are reconstructed offline with iterative cone algorithm (R=0.7)

Leading jet has 64% of momentum available in beam proton

first jet	second jet
$p_{\mathrm{T}} = 624 \mathrm{GeV}$	$p_{\scriptscriptstyle T}$ = 594 GeV
$y_{jet} = 0.14$	$y_{jet} = -0.17$
$\phi_{_{ m jet}}$ = 2.10	$\mathring{\phi}_{_{ m jet}}$ = 5.27
$M_{ii} = 1.22 \text{ TeV}$	

9 / 25

DO experiment

- Three main systems:
 - Tracker (silicon and scintillating fibre)
 - Calorimeter (IAr/U, some scintillator)
 - Muon chambers and scintillators

First two used in this measurement

10 / 25

DO calorimeter

- Calorimeter structure divides the measurement in three regions:
 - Central calorimeter (easiest)
 - Intercryostat region (challenging)
 - End caps (fine segmentation)

- Calorimeter is the most important detector for jet measurements
- Liquid-Argon/Uranium calorimeter:
 - Stable response, good resolution
 - Partially compensating ($e/\pi \sim 1$)

Gaps covered with scintillator tiles

Counting experiment

12 / 25

Jet energy scale

 Jet Energy Scale returns the measured calorimeter jet energy to the particle level

$$E_{ptcl} = \frac{E_{cal} - Offset}{(F_n \cdot R) \cdot S} \cdot k_{bias}$$

- Offset is energy not associated to the hard scatter: noise, pile-up, multiple interactions
- Response is the fraction of particle jet
 energy deposited in the calorimeter by the particles
- Detector showering accounts for energy flow in and out of the calorimeter jet due to detector effects (finite calorimeter tower and hadron shower size, magnetic field)
- Method biases corrected using tuned MC

JES: Response calibration

- Response calibration based on transverse momentum conservation
- Photon/central jet and recoil balanced in p_T at parton/particle level
- Calibration through missing- E_{τ} insensitive to the jet cone and showering effects

JES: Sample dependence

- Jets in γ +jet (absolute JES) and dijet (analysis) samples have very different quark/gluon composition
- Gluons fragment to softer particles than quarks \Rightarrow lower response

- Knowledge of single pion response is essential to predict the response differences correctly
- Monte Carlo single pion response tuned using γ +jet data

JES: η-dependence

- Response depends on calo region (central, intercryostat, end cap)
- Probe jet balanced against a photon or a central jet
- Simultaneous fit to dijet and γ+jet samples taking into account sample differences ⇒ relative JES for analysis directly from data

Dijet JES uncertainty

Improvement since 2006

- Uncertainties have improved by up to factor two and more in the central region since preliminary JES (2006)
- * Forward regions not published before, but improvement over factor 10

Jet p_T Resolution

- Jet p_T resolution was measured directly on data using dijets
- Basic variable dijet asymmetry A, which is corrected for soft radiation (third jet below reconstruction threshold) and particle level imbalance

Jet p_T resolution: details

- Parametrized by Noise, Stochastic and Constant terms in every | y | bin
- Smearing shape from MC truth: non-Gaussian tails explicitly accounted for
- Especially high p_T punch-through sizable effect

Jet p_{τ} resolution unfolding

- Jets can move in and out of p_{τ} bins due resolution
- We know how jets migrate; guess where they were (ansatz) and calculate where they would then go
- Iterate the initial guess a few times until match with data; take ratio of before and after

Final results

- Largest data set from Run II
 with the widest rapidity
 coverage (|y|<2.4) and
 smallest uncertainties to date
- D0 and CDF Run II data have superseded Run I data in MSTW08 PDFs
- Jet spectrum presented at particle level with midpoint cone (R_{cone} = 0.7)
- Compared to next-to-leading order (NLO) theory with CTEQ6.5M PDFs and nonperturbative corrections from Pythia

PRL 101, 062001 (2008)

Final results

- Good agreement between data and theory at all rapidities; MRST2004
 PDFs and low end of CTEQ6.5 PDF uncertainty favored (soft gluon)
- Scale uncertainty in next-to-leading order (NLO) theory comparable to experimental uncertainty at low p_{τ}

MSTW08: DØ and CDF comparison

- DØ and CDF data are compatible with the latest MSTW08 PDF central fit;
 improved agreement with extrapolation from new HERA data
- Both favor softer (and more natural) high-x gluon PDF than Run I data
 - ⇒ useful for physics predictions at the LHC

DØ Run II inclusive jet data (cone, R = 0.7) MSTW 2008 NLO PDF fit ($\mu_R = \mu_F = p_T^{JET}$), $\chi^2 = 114$ for 110 pts.

arXiv:0901.0002

CDF Run II inclusive jet data, $\chi^2 = 56$ for 76 pts.

June 3, 2009

Acknowledgements

I would like to thank:

- My advisors Christophe Royn (Saclay) and Greg Snow (UNL)
- My supervisor Jorma Tuominiemi (HIP)
- My funding agencies:
 - Graduate School for Particle and Nuclear Physics in Finland
 - * Finnish Cultural Foundation
 - * Magnus Ehrnrooth Foundation

P.S. Tuula sends her greetings to everyone!

Fermilab Today result of the week on January 24th: www.fnal.gov/today (08-01-24)

Back Up Slides

Components of uncertainty

- Total uncertainty is dominated by the (much improved!) JES
- Unfolding ($\approx p_{\tau}$ resolution) uncertainty much smaller than JES
- Luminosity is a significant uncertainty at low p_{τ} in CC
- Efficiency uncertainty negligible

A Short History Of Scattering

- Rutherford shoots alpha particles to gold foil and finds atomic nucleus
- Higher energy probes start to break heavier nuclei
- Very high energy probes find parton substructure of the nuclei (quarks, gluons, virtual particles)
- Modern day deep inelastic scattering experiments probe the parton structure of the proton in detail and look for the unexpected

 $q(x_1)$

 $q(x_2)$

 \mathbf{q}

target nucleus

Parton distributions

- Inclusive jet cross section can constrain parton distribution functions (PDFs), especially the gluon PDF at high x
- PDFs are needed e.g. to reliably calculate backgrounds at the LHC

Proton parton distribution functions

x: fraction of proton momentum carried by individual parton

 $f(x,Q^2)$: probability of finding parton with momentum fraction x in interval dx

29 / 25

DO experiment

Main components: tracker, electromagnetic calorimeter, hadronic calorimeter, muon detectors

Upgraded for Run II with new silicon and scintillating fiber trackers, 2 T solenoid magnet (for tracking), preshower detectors,

One of the more exciting stories

• The inclusive jet cross section measurement caused quite some excitement in Run I when CDF saw interesting features at high $E_{\rm T}$

Both measurements
 were later shown to be
 explainable by
 increased gluon PDFs,
 renormalization scale
 in theory and cone
 algorithm; all within
 the allowed parameter
 range of QCD

Jet algorithm

- Detailed comparison to theory needs a precise definition of jet algorithm
- This measurement uses Run II Midpoint Cone with $R_{cone} = 0.7$

Run I Legacy Cone:

Draw a cone of fixed size in η - ϕ space around a seed

Compute jet axis from E_{τ} -weighted mean and jet E_{τ} from $\sum E_{\tau}$'s

Draw a new cone around the new jet axis and recalculate axis and new E_{τ}

Iterate until stable

Algorithm is sensitive to soft radiation

Run II Midpoint Cone:

Use 4-vectors instead of E_{τ}

Add additional midpoint seeds between pairs of close jets

Split/merge after stable protojets found

Improved infrared safety at NLO

(DO Run II/CDF MIDPOINT)

We characterize jets in terms of p_{τ} and y

Non-perturbative corrections

 Hadronization and underlying event soft QCD effects and cannot be calculated with perturbation theory

Pythia tune A used to calculate the non-perturbative corrections to

theory

Run II advantage

- Luminosity now ten times that of Run I ⇒ ×3 gluon PDF sensitivity
- Center-of-mass energy also 10% higher ⇒ three times higher cross section at p_T = 550 GeV
- Luminosity + cross section increase ⇒ ×5 quark substructure sensitivity

Triggers

- Triggers fire on single jets above $p_{ au}$ threshold
- Measurement spans eight orders of magnitude in six rapidity regions
- Full p_T spectrum combined from seven different triggers

Cosmic background

- Cosmic peak at p_T / MET ~ 1 comparable to inclusive jet cross section at p_T > 400 GeV
- Missing- E_T cut is important to remove cosmic background:
 - high rejection (100%)
 - low inefficiency (<0.5%)

Vertex cut

- Interaction vertex position is required to be within $|z_{vtx}|$ < 50 cm of the calorimeter to improve jet p_T resolution
- Jets at large z_{vtx} can hit the calorimeter at a weird angle and at worse miss most of the calorimeter

- Vertex is needed for p_T reconstruction (E from the calorimeter, p_T with the vertex)
- Tracking efficiency quickly degrades beyond $|z_{vtx}|=40-50$ cm

Vertex efficiency

- Vertex cut efficiency is calculated from the longitudinal beam shape
- Time and luminosity dependence
 - Beam parameters (β^*) changing in epochs
 - Beam heating with time in store (luminosity ~ 1 / time)
- Average inefficiency 7.0±0.5%
- Leading inefficiency, others much smaller

JetID inefficiency

- JetID efficiency determined with the tag-and-probe method:
 - Tag is a good jet (or a photon) and an opposite track jet ⇒ good event
 - Probe is a reconstructed jet close to the track jet
- Cross checks with different samples and direct cut fraction

EM-jet background

- Even with the tightest photon ID, γ +jet sample has significant EM-jet (leading $\pi^0 \rightarrow \gamma + \gamma$) background (dijet cross section $\times 1000$)
- To reduce systematics, derived purity and energy scale for EM-jets, which are considered as part of the calibration sample \Rightarrow (γ /EM-jet)+jet sample

JES: CC response fit

- Over 2% extrapolation uncertainty reduced by scaling single pion response in MC to γ +jet data
- Predict high p_T jet response by fitting low p_T pion response

Agreement with isolated track data

Eta-intercalibration

- Response η -dependence calibrated with respect to central jets and photons
- Dijets increase statistics at high p_{τ} in the forward region compared to γ +jets
- Simultaneous fit to dijet and y+jet samples taking into account sample differences
- Resolution bias for central jet in dijets explicitly corrected for and calibrated using central jet pairs

JES: Dijet corrections

- MC with single pion response scaled to data is used to derive the ratio of dijet and γ +jet responses in CC (-4% at 50 GeV, +2% at 400 GeV)
- Showering and bias corrections also rederived for dijets using tuned MC
- η -intercalibration for dijets directly from data
- Additional corrections for E/p_T difference and rapidity bias \Rightarrow fourmomentum calibration

Dijet JES corrections

JES: Closure tests

- γ +jet closure tests consistency of JES corrections for absolute scale in CC
- Dijet closure tests the consistency of forward JES relative to CC
- Closure calculated from dijet asymmetry $A = (p_{T,fwd} p_{T,cc}) / (p_{T,fwd} + p_{T,cc})$
- Explicit correction for residual resolution bias

JES: Rapidity bias

- Small detail: correction to p_T is much more important
- Jets are biased in rapidity on average toward the center of the calorimeter
- At most (in ICR), bias little less than half a cell width

Soft radiation correction

- Soft radiation estimated by increasing reconstruction threshold $p_{T,soft}^{cut}$ and the bias
- Extrapolation to $p_{T,soft}^{cut} \rightarrow 0$ gives the correction
- Soft radiation correction vanishes asymptotically at high p_T :

$$k_{soft}(p_T) = 1 - \exp(-a_0 - a_1 p_T)$$

- Particle level imbalance from asymmetry in pure particle level MC after soft radiation correction
- Small correction, <10% everywhere

Jet p_T unfolding

- Observed cross section is higher than true because more events migrate from high (and low) $p_{T,ptcl}$ into a given bin of measured p_T than migrate out of the bin due to jet p_T resolution \Rightarrow net increase
- Model the true cross section (ansatz method) and smear it (⇒resolution!) to obtain the observed cross section and then iteratively fit this to data

Uncertainty correlations

- The uncertainty correlations are provided in the format CTEQ uses: set of independent variations (sources) describing how points move together
- Average bin-to-bin correlation of about 80% with RMS of 10%
- Using the correlation information in the global PDF fit should further reduce the effective uncertainty in the measurement

Uncertainty correlations

- Leading sources are from JES:
 - EM energy scale $(Z \rightarrow e^+e^-$ calibration)
 - Photon energy scale (MC description of e/γ response, material budget)
 - High p_T extrapolation
 (fragmentation in Pythia/Herwig, PDFs)
 - Rapidity decorrelation (uncertainty in η dependence)
 - Detector showering
 (goodness of template fits)
- Only five highest out of 23 correlated systematics shown

