Understanding Ultrahigh Quality Factor Accelerator Cavities in the Quantum Regime

State of the art for SC qubits

🛠 Fermilab

From this week's APS Physics Viewpoint /PRL:

- Best T₂ ~ 50 µsec
- Q₂ ~ 400,000

Why are we excited?

- A typical accelerator cavity has Q > 10¹⁰
- This corresponds to T₂ > 1 second!

H. Paik, D. I. Schuster, et. al. PRL 107, 240501 (2011)

First results (power dependence)

Typical Fermilab cavity performance

Quantum Computer vs. Accelerator Cavities

- QC cavities optimized for coupling to single photon, limited by loss of single photon
- Accelerator cavities optimized for highest accelerating field, limited by breakdown at maximum power
- Both want high Q but everything else is different

Property	QC	Accelerator	Comparison
Quality Factor	10 ⁶	10 ¹¹	10 ⁵
Frequency	4-10 GHz	1-10 GHz	1
Input power	10 ⁻¹⁸ W	1 W	10^{18}
Temperature	0.01 K	2K	10 ²
Mode volume	$10^{-6}\lambda^3$	λ^3	10^{6}
E field strength	1 <i>V/m</i>	$10^7 V/m$	10 ⁷

口Fermilab

Millikelvin resonator characterization system

Now possible to couple qubits to 3D cavities

Fermilab

H. Paik, D. I. Schuster, et. al. PRL 107, 240501 (2011)

Fermilab cannot test below ~1.5 K *This is uncharted territory!*

- Q = 40,000,000
 - Higher than any QC qubit / resonator!
 - \dots but why isn't this 10¹⁰?
- Reasonable frequency vs temp
- Strange Q(T) dependence
- For early data, cavity temperature was not equal to fridge temperature

First measurements of a Fermilab Cavity at T << 1 K!!

Next steps

- Try to understand why Q appears to be lower at UofC
 - Improve measurements of the Fermilab cavities
 - Modify coupling of antenna
 - Bring in expertise of cavity test group at Fermilab
 - Phase-locked loop scheme should be used for high Q
 - Add magnetic shielding
- Then:
 - Design cavity compatible with SC qubit
 - Possibly fabricate it at Fermilab
 - Dynamically tunable Q
 - Attempt to miniaturize cavities

口Fermilab