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SUSY makes very sharp predictions for the spins and (some)

couplings of the SUSY partners. Need to measure these to test

SUSY.

- Supermultiplets: partners have “opposite” spins ∗

- SM gauge ↔ gaugino couplings

Soft SUSY breaking parameters at EW scale + RGE running

reconstruct high-scale theory. Need to measure these to shed

light on deeper fundamental physics.

- SUSY particle masses

- Some mixing parameters (show up in coupling strengths)
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We define a minimal model with universal extra dimensions, and begin to study its phenomenology. The

collider signals of the first Kaluza-Klein !KK" level are surprisingly similar to those of a supersymmetric
model with a nearly degenerate superpartner spectrum. The lightest KK particle !LKP" is neutral and stable
because of KK parity. KK excitations cascade decay to the LKP yielding missing energy signatures with

relatively soft jets and leptons. Level 2 KK modes may also be probed via their KK number violating decays

to standard model particles. In either case we provide initial estimates for the discovery potential of the

Fermilab Tevatron and the CERN Large Hadron Collider.
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I. INTRODUCTION

The new ideas of extra dimensions and localized gravity

have recently attracted a lot of interest. They not only offer

exciting new avenues for theoretical exploration but also pre-

dict signals which can soon be tested at the upcoming col-

lider experiments at the Fermilab Tevatron and the CERN
Large Hadron Collider !LHC".
The focus of this paper is on universal extra dimensions

!UEDs" #1$, a model in which all standard model fields
propagate in extra dimensions of size R!1% TeV. Although
there are many theoretical reasons for studying UEDs !elec-
troweak symmetry breaking #2$, proton decay #3$, the num-
ber of generations #4$, neutrino masses #5$, etc.", we are pri-
marily motivated by their collider phenomenology.
Experimental bounds allow Kaluza-Klein !KK" modes in
UEDs to be as light as a few hundred GeV #1,6,7$. The
production cross section at the LHC for KK excitations of
quarks and gluons weighing only a few hundred GeV is
enormous. However, as we discuss in this paper, their subse-
quent detection is nontrivial because they decay nearly invis-
ibly. The phenomenology of UEDs shows interesting paral-
lels to supersymmetry. Every standard model field has KK
partners. The lowest level KK partners carry a conserved
quantum number, KK parity, which guarantees that the light-
est KK particle !LKP" is stable. Heavier KK modes cascade
decay to the LKP by emitting soft standard model particles.
The LKP escapes detection, resulting in missing energy sig-
nals.
In the following section we define minimal universal extra

dimensions !MUEDs". The model is defined in five dimen-
sions with one dimension compactified on an S1 /Z2 orbifold.
All fields propagate in the bulk and have KK modes with
masses approximately equal to the compactification scale.
The Lagrangian of the model includes interactions which are
localized at the boundaries of the orbifold. These boundary

terms lead to mass splittings between KK modes and affect
their decays. In Secs. III and IV we discuss the phenomenol-
ogy of the first and second level KK states, respectively. We
identify possible decay modes and branching ratios, and we
estimate the discovery reach at the Tevatron and the LHC.
Section V contains our conclusions and speculations about
the cosmology of UEDs.

II. MINIMAL UNIVERSAL EXTRA DIMENSIONS

The simplest UED scenario has all of the standard model
fields !no supersymmetry" propagating in a single extra di-
mension. In 4"1 dimensions, the fermions

#Qi ,ui ,di ,Li ,ei ,i#1,2,3, where upper !lower" case letters
represent SU(2) doublets !singlets"$ are four-component and
contain both chiralities when reduced to 3"1 dimensions. To
produce a chiral 4D spectrum, we compactify the extra di-
mension on an S1 /Z2 orbifold. Fields which are odd under
the Z2 orbifold symmetry do not have zero modes, hence the
unwanted fields !zero modes of fermions with the wrong
chiralities and the 5th component of the gauge fields" can be
projected out. The remaining zero modes are just the stan-
dard model particles in 3"1 dimensions.
The full Lagrangian of the theory comprises both bulk

and boundary interactions. Gauge and Yukawa couplings and
the Higgs potential are contained in the bulk Lagrangian in
one-to-one correspondence with the couplings of the stan-
dard model. The boundary Lagrangian interactions are local-
ized at the orbifold fixed points and do not respect five di-
mensional Lorentz invariance.
Ignoring the localized terms for the moment, the mass of

the nth KK mode is

mn
2#

n2

R2
"m0

2 , !1"
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Universal Extra Dimen-

sions (UED): “partners”

have same spins as corre-

sponding SM particles.

SUSY: q̃

χ̃0
2

"̃∓
L

χ̃0
1

UED: Q1

Z1

"∓1

γ1

q

"± (near)

"∓ (far)

FIG. 10: Twin diagrams in SUSY and UED. The upper (red) line corresponds to the cascade decay

q̃ → qχ̃0
2 → q"±"̃∓L → q"+"−χ̃0

1 in SUSY. The lower (blue) line corresponds to the cascade decay

Q1 → qZ1 → q"±"∓1 → q"+"−γ1 in UED. In either case the observable final state is the same:

q"+"− /ET .

analogous decay chain Q1 → qZ1 → q!±!∓1 → q!+!−γ1 in UED [11, 12]. Both of these

processes are illustrated in Fig. 10.

FIG. 11: Lepton-quark invariant mass distributions in (a) UED with R−1 = 500 GeV and (b)

supersymmetry with a matching sparticle spectrum. We show separately the distributions with

the near and far lepton, and their sum. The positive (negative) charge leptons are shown in red

(blue).

Next, one forms the lepton-quark invariant mass distributions M!q (see Fig. 11). The

spin of the intermediate particle (Z1 in UED or χ̃0
2 in SUSY) governs the shape of the

distributions for the near lepton. However, in practice we cannot distinguish the near and

far lepton, and one has to include the invariant mass combinations with both leptons. This

tends to wash out the spin correlations, but a residual effect remains, which is due to the

26

diagram from Battaglia, Datta, De Roeck, Kong, & Matchev, hep-ph/0507284
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SUSY makes very sharp predictions for the spins and (some)

couplings of the SUSY partners. Need to measure these to test

SUSY.

- Supermultiplets: partners have “opposite” spins ∗

- SM gauge ↔ gaugino couplings

Soft SUSY breaking parameters at EW scale + RGE running

reconstruct high-scale theory. Need to measure these to shed

light on deeper fundamental physics.

- SUSY particle masses

- Some mixing parameters (show up in coupling strengths)

Focus on mass extraction.

To show how ideas work, I’ll start with techniques at an e+e−

collider (ILC), then talk about LHC.
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SUSY masses at ILC

Consider e+e− → slepton pairs

with decays ˜̀→ `Ñ1.

How can we measure the ˜̀ and Ñ1 masses?
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One way is to scan the beam energy across the production
threshold.

Upside:
- Shape at threshold also gives you a spin measurement

Downsides:
- Takes a lot of luminosity
- Constrains what other physics you can do simultaneously (prob-
ably want to run at the highest available beam energy?)
- Can we even try to do this at LHC??

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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A more clever technique: use kinematic endpoints.

Consider e+e− → ˜̀
R
˜̀∗
R → `−Ñ1`

+Ñ1.
- Measure maximum and minimum values of ` energies
- Extract m˜̀

R
and m

Ñ1

Here’s how it works.
(1) Consider the rest frame of one ˜̀. Energy and momentum
conservation:

E` + E
Ñ

= m˜̀, ~p` = −~p
Ñ

Neglect the mass of `. Then E` = |~p`|.
Also have E

Ñ
=
√
m2
Ñ

+ ~p2
Ñ

=
√
m2
Ñ

+ E2
` .

Plug in to energy conservation equation, rearrange, and square
both sides:

m2
Ñ

+ E2
` = m2

˜̀ − 2m˜̀E` + E2
`

or E` = |~p`| =
m2
˜̀ −m2

Ñ

2m˜̀
Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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(2) Now we’ll boost the ˜̀ to the collider center-of-mass frame.

E˜̀
R1

+ E˜̀
R2

=
√
s, ~p˜̀

R1
= −~p˜̀

R2

Use the fact that two particles of the same mass m˜̀are produced:

E˜̀
R1

=
√
m2
˜̀ + ~p2

˜̀
R1

= E˜̀
R2

=

√
s

2
= γm˜̀

|~p˜̀
R1
| =

√
s

4
−m2

˜̀ = γm˜̀|~v|

(3) Compute ECM` in the CM frame by doing the boost:

(cos θ∗ is defined in ˜̀ rest frame)

ECM` = γ (E` + βp`z) = γ
(
E` + β|~p`| cos θ∗

)
= E`

(
γ + γ|~v| cos θ∗

)

From above we have

γ =

√
s

2m˜̀
, γ|~v| =

√
s− 4m2

˜̀
2m˜̀
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Put it all together:

ECM` =
m2
˜̀ −m2

Ñ

4m2
˜̀

(√
s+

√
s+ 4m2

˜̀ cos θ∗
)

Max (min) lepton energy corresponds to cos θ∗ = 1 (−1).√
s is known: collider CM energy.

Measure Emax` and Emin` from lepton kinematic distributions.
Solve for m˜̀ and m

Ñ
! A little algebra gives:

m2
˜̀ =

s

4


1−

(
Emax − Emin
Emax + Emin

)2



m2
Ñ

= m2
˜̀

[
1− 2(Emax + Emin)√

s

]

Need to isolate data sample with only ˜̀
R
˜̀
R pair production:

can use e+e− beam polarization to suppress ˜̀
L
˜̀
L and W+W−

background.

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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In practice, things are a little more complicated.

Ex: e+e− → µ̃+
L,Rµ̃

−
L,R with mµ̃R

= 178 GeV, mµ̃L
= 287 GeV

Note the muon energy edges at about 65 and 220 GeV.

from W+W− decaying into the µν final state is included. Only with polarized e− and e+

beams can both muon-energy edges, at around 65 and 220 GeV, be reconstructed. The
slepton masses can be determined in the continuum up to a few GeV uncertainty. This
shows the real importance of positron polarization for a clear observation of the low-
energy edge associated to the µ̃R, which cannot be clearly seen unless the positron is
polarized [87].

Energy spectrum of µ+µ− [GeV]

µ+µ− events (incl. W+W−)

(Pe− , Pe+) = (−80%,+80%)

√
s = 750 GeV

Energy spectrum of µ+µ− [GeV]

µ+µ− events (incl. W+W−)
√

s = 750 GeV

(Pe− , Pe+) = (+80%,−80%)

Figure 3.4: Energy spectrum of muons from µ̃L,R decays into µχ̃0
1 final states, including

the W+W− background decaying into µν final states in the scenario S3, cf. table 3.1, for
two combinations of beam polarizations for

√
s = 750 GeV and Lint = 500 fb−1 [87].

Quantitative examples: The most important background to µ̃ pair production is
WW pair production. Compared with the case of only the electron beam polarized,
the signal gains about a factor 1.8 and the background is suppressed by about a factor
of 4 with (Pe− , Pe+) = (+80%, −80%) compared to (+80%, 0). With both beams
polarized, a rather accurate measurement of the smuon masses is possible already in
the continuum, which can then be used to devise possible threshold scans.

3.1.4 Determination of third-generation sfermion parameters

The advantages of having both beams polarized in third-generation sfermion produc-
tion are the larger cross sections and a more precise determination of masses and mix-
ing angles.

In the third generation of sfermions, Yukawa terms give rise to a mixing between the
‘left’ and ‘right’ states f̃L and f̃R (f̃ = t̃, b̃, τ̃ ). The mass eigenstates are f̃1 = f̃L cos θf̃ +

f̃R sin θf̃ , and f̃2 = f̃R cos θf̃ − f̃L sin θf̃ , with θf̃ the sfermion mixing angle.
In the following phenomenological studies of third-generation sfermions in e+e− an-

nihilation at
√

s = 500 GeV are summarized. Information on the mixing angle can be
obtained by measuring production cross sections with different combinations of beam
polarizations. It has been shown in [88, 90, 91] that beam polarization is important to re-
solve ambiguities, see fig. 3.5. For the unpolarized case, two values of cos 2θτ̃ (θτ̃ being the
mixing angle) are consistent with the cross sections (red lines). However, the use of po-
larized beams allows a single solution (green and blue lines) to be identified. Moreover,

49

from hep-ph/0507011

These plots also demonstrate effect of beam polarization:

RH e− and LH e+ eliminate large t-channel W+W− background.

Beam pol also changes the strength of the Z∗ contribution:

different effect on µ̃L and µ̃R pair production.

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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49

from hep-ph/0507011

Eyeballing the endpoints:
µ̃L: Emax ≈ 220 GeV, Emin ≈ 65 GeV (note pol’n dep → µ̃L)
µ̃R: Emax ≈ 65 GeV, Emin not visible!
Solve: get mµ̃L

and m
Ñ

from µ̃L endpoints; plug in m
Ñ

to get
mµ̃R

from Emax

mµ̃L
≈ 282 GeV (compare input 287 GeV)

m
Ñ1
≈ 153 GeV

mµ̃R
≈ 167 GeV (compare input 178 GeV)

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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Why are the lepton energy distributions flat?
Take another look at the formula:

ECM` =
m2
˜̀ −m2

Ñ

4m2
˜̀

(√
s+

√
s+ 4m2

˜̀ cos θ∗
)

We’re asking about the differential cross section,

dσ

dECM`
=

dσ

d cos θ∗
d cos θ∗

dECM`

d cos θ∗/dECM` is a constant.

dσ/d cos θ∗ is the ˜̀ decay distribution in the ˜̀ rest frame.
- ˜̀ is a scalar: it can’t single out any direction.
→ uniform decay distribution over the solid angle:

dσ

d cos θ∗dφ∗
= const

Integrating over the φ∗ angle gives us what we want to know:
dσ/dECM` is flat (with endpoints).

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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SUSY masses at the LHC

Difficult:

- Missing pT : don’t know boost of CM along beam direction.

- Two invisible particles: know only the sum of their missing pT .

But: LHC can produce heavy sparticles: long decay chains, many

kinematic variables to play with.

Since we don’t know the boost of individual events, want to use

kinematic invariants, like invariant masses.

Consider the decay chain Ñ2 → ˜̀±
R`
∓ → Ñ1`

+`−

(First need to select events that contain a Ñ2 and identify the `+`− coming

from the Ñ2 decay.)

Invariant observable: invariant mass of `+`−: M``

How is this related to the SUSY masses?

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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Considering the decay chain Ñ2 → ˜̀±
R`
∓ → Ñ1`

+`−

Momentum and energy conservation in each decay:

p
Ñ2

= p`1 + p˜̀ p˜̀= p`2 + p
Ñ1

Combine and rearrange:

M2
`` = (p`1 + p`2)2 = (p

Ñ2
− p

Ñ1
)2 = m2

Ñ2
+m2

Ñ1
− 2~p

Ñ2
· ~p
Ñ1

What is this? Let’s work in the Ñ2 rest frame (can do that

because we’re calculating kinematic invariants!)

→ p
Ñ2
·p
Ñ1

= m
Ñ2
E
Ñ1

where E
Ñ1

is energy in the Ñ2 rest frame,

so

M2
`` = m2

Ñ2
+m2

Ñ1
− 2m

Ñ2
E
Ñ1

Now we need to find the kinematic endpoint(s) of E
Ñ1

in the Ñ2

rest frame in terms of the SUSY masses.

Strategy:

Relate the energies to masses and the ˜̀ decay angle θ

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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Relate the energies to masses and the ˜̀ decay angle θ in Ñ2 rest

frame.

Look at Ñ2 decay: m
Ñ2

= E`1 + E˜̀, ~p`1 = −~p˜̀
Solve using four-momentum conservation (with m` ' 0):

E`1 =
1

2m
Ñ2

(
m2
Ñ2
−m2

˜̀
)

|~p`1| = E`1

E˜̀ =
1

2m
Ñ2

(
m2
Ñ2

+m2
˜̀
)

|~p˜̀| = |~p`1| = E`1

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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Now let’s do the ˜̀ decay in the ˜̀ rest frame (denoted by a star
– will need to boost back to the Ñ2 rest frame at the end!)
4-momentum conservation: m˜̀= E∗`2 + E∗

Ñ1
, ~p∗`1 = −~p∗

Ñ1

E∗`2 =
1

2m˜̀

(
m2
˜̀ −m2

Ñ1

)
|~p∗`2| = E∗`2

E∗
Ñ1

=
1

2m˜̀

(
m2
˜̀ +m2

Ñ1

)
|~p∗
Ñ1
| = |~p∗`2| = E∗`2

Have E∗
Ñ1

in the ˜̀ rest frame; need to boost to Ñ2 rest frame.

Work out the kinematic boost from the ˜̀energy and momentum:

γ =
E˜̀
m˜̀

=
m2
Ñ2

+m2
˜̀

2m
Ñ2
m˜̀

, γβ =
|~p˜̀|
m`

=
m2
Ñ2
−m2

˜̀
2m

Ñ2
m˜̀

Now do the boost:

E
Ñ1

= γ

(
E∗
Ñ1

+ β|~p∗
Ñ1
| cos θ∗

)

where θ∗ is the angle between the ˜̀ decay direction and the ˜̀
boost (in the ˜̀ rest frame)

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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Plug in γ and γβ:

E
Ñ1

=
1

4m
Ñ2
m2
˜̀

[(
m2
Ñ2

+m2
˜̀
) (

m2
˜̀ +m2

Ñ1

)

+
(
m2
Ñ2
−m2

˜̀
) (

m2
˜̀ −m2

Ñ1

)
cos θ∗

]

Remember our original formula for the `` invariant mass:

M2
`` = m2

Ñ2
+m2

Ñ1
− 2m

Ñ2
E
Ñ1

Kinematic endpoint: the maximum of M`` corresponds to the
minimum of E

Ñ1
, which occurs for cos θ∗ = −1:

E
Ñ1

∣∣∣∣
min

=
1

2m
Ñ2
m2
˜̀

(
m4
˜̀ +m2

Ñ2
m2
Ñ1

)

Plugging in to M2
`` formula and simplifying gives

M``|max =




(
m2
Ñ2
−m2

˜̀
) (

m2
˜̀ −m2

Ñ1

)

m2
˜̀




1/2

.

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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One endpoint measurement constrains a combination of three

SUSY masses.

M``|max =




(
m2
Ñ2
−m2

˜̀
) (

m2
˜̀ −m2

Ñ1

)

m2
˜̀




1/2
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Figure 5: Reach for observing dilepton endpoints in SUGRA models with 1 fb−1, 10 fb−1

and 100 fb−1. Theory (TH) and experimental constraints are also indicated [4].
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Figure 6: Dilepton + jet distributions for mSUGRA Point 5 as described in the text.

illustrated in Figure 5. In particular, a large part of the mSUGRA parameter space with
acceptable cold dark matter has light sleptons and hence enhanced !+!− decays.

from Paige, hep-ph/0211017
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LHC can do more if we look at longer decay chains:
→ more kinematic invariants to play with.

Add a squark to the top of our decay chain:
q̃ → Ñ2q → ˜̀±`∓q → Ñ1`

+`−q

Invariant mass of q and the first lepton emit-

ted (`1) has an endpoint analogous to the ``

endpoint:

Mq`1

∣∣∣
max

=




(
m2
q̃ −m2

Ñ2

)(
m2
Ñ2
−m2

˜̀
)

m2
Ñ2




1/2

How to distinguish `1 from `2?

→ `1 likely to have higher energy.

With Mq`1|max and M``|max we have 2 mea-

surements and 4 unknowns.

Not doing better than before... yet.
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Figure 5: Reach for observing dilepton endpoints in SUGRA models with 1 fb−1, 10 fb−1

and 100 fb−1. Theory (TH) and experimental constraints are also indicated [4].
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Figure 6: Dilepton + jet distributions for mSUGRA Point 5 as described in the text.

illustrated in Figure 5. In particular, a large part of the mSUGRA parameter space with
acceptable cold dark matter has light sleptons and hence enhanced !+!− decays.

from Paige, hep-ph/0211017
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Decay chain has an extra kinematic invariant:

Invariant mass of q`+`−.

Mq``|max =




(
m2
q̃ −m2

Ñ2

)(
m2
Ñ2
−m2

Ñ1

)

m2
Ñ2




1/2

3 measurements and 4 unknowns.

Doing better!
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Figure 5: Reach for observing dilepton endpoints in SUGRA models with 1 fb−1, 10 fb−1

and 100 fb−1. Theory (TH) and experimental constraints are also indicated [4].
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Figure 6: Dilepton + jet distributions for mSUGRA Point 5 as described in the text.

illustrated in Figure 5. In particular, a large part of the mSUGRA parameter space with
acceptable cold dark matter has light sleptons and hence enhanced !+!− decays.

from Paige, hep-ph/0211017
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There are also lower kinematic edges:

After applying a cut M`` > Mmax
`` /

√
2,

get a complicated formula for a lower

kinematic endpoint for Mq``.
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Figure 5: Reach for observing dilepton endpoints in SUGRA models with 1 fb−1, 10 fb−1

and 100 fb−1. Theory (TH) and experimental constraints are also indicated [4].
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Figure 6: Dilepton + jet distributions for mSUGRA Point 5 as described in the text.

illustrated in Figure 5. In particular, a large part of the mSUGRA parameter space with
acceptable cold dark matter has light sleptons and hence enhanced !+!− decays.

from Paige, hep-ph/0211017

Can also consider the decay chain q̃ → Ñ2q → Ñ1hq with h→ b̄b
[The Higgs mass can be measured elsewhere]

Then Mhq has a threshold (lower kinematic edge)

Get enough measurables to extract all the masses!
Uncertainties from blurring of the kinematic endpoints by back-
grounds, wrong jet/lepton combinations, also gluon radiation off
the jet at NLO.

22



Kinematic endpoints:

- Need long decay chains, good statistics

- Subject to background, resolution, QCD radiation smearing

Can we do better? Lots of recent progress:

Review: Barr & Lester, arXiv:1004.2732

Exact kinematic relations:

Completely solve the kinematics of each SUSY cascade decay.

Need on-shell intermediates, reasonably long decay chains.

Kawagoe, Nojiri, Polesello, PRD 71, 035008 (2005), Cheng et al, PRL 100, 252001 (2008)

Minima, maxima, kinks, and cusps:

Find mass relations, upper and lower bounds from dependence

of new observables on unknown fit variables.

MT2, MT2 kinks, M2C,
√
ŝmin, etc.

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010

23



Exact kinematic relations Kawagoe, Nojiri, & Polesello, PRD 71, 035008 (2005)

Completely solve the kinematics of each SUSY cascade decay.
- Selected events must be from one particular decay chain
- SUSY particles in the decay chain must be on mass shell
Each event gives you the 4-momenta of all the decay products
except Ñ1.

Have to consider a longer decay chain: g̃ → qq̃ → qqÑ2 → qq` ˜̀→
qq``Ñ1. 5 sparticles involved → 5 mass-shell conditions:
m2
Ñ1

= p2
Ñ1

m2
˜̀ = (p

Ñ1
+p`1)2 m2

Ñ2
= (p

Ñ1
+p`1 +p`2)2

m2
q̃ = (p

Ñ1
+p`1+p`2+pq1)2 m2

g̃ = (p
Ñ1

+p`1+p`2+pq1+pq2)2

Each qq``Ñ1 event contains 4 unmeasured degrees of freedom,

the 4 components of the Ñ1 4-momentum.

→ Each event picks out a 4-dimensional hypersurface in a 5-
dimensional mass parameter space.
Overlap multiple events in this hyperspace → find a discrete set

of solutions from overlap of different hypersurfaces.

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010

24



Exact kinematic relations II Cheng et al, PRL 100, 252001 (2008)

Solve shorter chains by using both sides of the event.

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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6 constraint equations from one event:

MZ p p p p p p p p ,
MY p p p p p p ,
MX p p p p ,
MN p p .

px px px
miss, py py py

miss.

q q p ,
q q q q p p ,

q q q q q q p p p ,
q q q q q q q q p p p p ,

qx qx qx
miss, qy qy qy

miss.

8 unknown components of missing (invisible) particle 4-momenta

(p1 and p2)

Still 2 unknowns: cannot solve.

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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Add a second event: 8 more unknowns (q1 and q2) but 10 more

equations:

MZ p p p p p p p p ,
MY p p p p p p ,
MX p p p p ,
MN p p .

px px px
miss, py py py

miss.

q q p ,
q q q q p p ,

q q q q q q p p p ,
q q q q q q q q p p p p ,

qx qx qx
miss, qy qy qy

miss.

Can invert for the masses directly!

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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SPS1a: Ideal from 100

events (no combinatorics or

resolution)

300 fb−1 after ATLFAST,

combinatorics, some cuts to

reduce wrong combinations 2
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FIG. 2: We plot the number of mass solutions (in 1 GeV bins
— the same binning is used for the other plots) vs. mass in
the ideal case. All possible pairs for 100 events are included.

For illustration and easy comparison to the litera-
ture, we apply our method for the SUSY point, SPS1a
[11], although many of the discussions below apply for
generic cases. For SPS1a, the particles correspond-
ing to N, X, Y, Z are χ̃0

1, "̃R(" = e/µ), χ̃0
2, q̃L(q =

d, u, s, c) respectively. The masses are {97.4, 142.5, 180.3,
564.8/570.8} GeV, with the final two numbers corre-
sponding to up/down type squarks respectively. Since
meτ != mee,eµ, the " = τ case is an important background.
We generate events with PYTHIA 6.4 [10].

We first consider the ideal case: no background events,
all visible momenta measured exactly, all intermediate
particles on-shell and each visible particle associated with
the correct decay chain and position in the decay chain.
We also restrict the squarks to be up-type only. In this
case, we can solve for the masses exactly by pairing any
two events. The only complication comes from there be-
ing 8 complex solutions for the system of equations, of
which more than one can be real and positive. Of course,
the wrong solutions are different from pair to pair, but
the correct solution is common. The mass distributions
for the ideal case with 100 events are shown in Fig. 2. As
expected, we observe δ-function-like mass peaks on top
of small backgrounds coming from wrong solutions. On
average, there are about 2 solutions per pair of events.

The δ-functions in the mass distributions arise only
when exactly correct momenta are input into the equa-
tions we solve. To be experimentally realistic, we now
include the following.

1. Wrong combinations. For a given event a “com-
bination” is a particular assignment of the jets and lep-
tons to the external legs of Fig.1. For each event, there
is only one correct combination (excluding 1357 ↔ 2468
symmetry). Assuming that we can identify the two jets
that correspond to the two quarks, we have 8 (16) pos-
sible combinations for the 2µ2e (4µ or 4e) channel. The
total number of combinations for a pair of events is the
product of the two, i.e. 64, 128 or 256. Adding the wrong
combination pairings for the ideal case yields the mass
distributions of Fig. 3. Compared to Fig. 2, there are
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FIG. 3: Number of mass solutions versus mass after including
all combination pairings for 100 events.

16 times more (wrong) solutions, but the δ-function-like
mass peaks remain evident.

2. Finite widths. For SPS1a, the widths of the
intermediate particles are roughly 5 GeV, 20 MeV and
200 MeV for q̃L, χ̃0

2 and "̃R. Thus, the widths are quite
small in comparison to the corresponding masses.

3. Mass splitting between flavors. The masses for
up and down type squarks have a small difference of 6
GeV. Since it is impossible to determine flavors for the
light jets, the mass determined should be viewed as the
average value of the two squarks (weighted by the parton
distribution functions).

4. Initial/final state radiation. These two types of
radiation not only smear the visible particles’ momenta,
but also provide a source for extra jets in the events. We
will apply a pT cut to get rid of soft jets.

5. Extra hard particles in the signal events.
In SPS1a, many of the squarks come from gluino de-
cay (g̃ → qq̃L), which yields another hard q in the event.
Fortunately, for SPS1a meg − meqL

= 40 GeV is much
smaller than meqL

− meχ0
2

= 380 GeV. Therefore, the q
from squark decay is usually much more energetic than
the q from g̃ decay. We select the two jets with highest pT

in each event after cuts. Experimentally one would want
to justify this choice by examining the jet multiplicity
to ensure that this analysis is dominated by 2-jet events,
and not 3 or 4 jet events. Furthermore, the softer jets will
be an indication of clearly separable mass-differences.

6. Background events. The SM backgrounds are
negligible for this signal in SPS1a. There are a few sig-
nificant backgrounds from other SUSY processes:

(a) q̃L → qχ̃0
2 → qτ τ̃ → qττχ̃0

1 for one or both de-
cay chains, with all τ ’s decaying leptonically. Indeed,
χ̃0

2 → τ τ̃ has the largest partial width, being 14 times
that of χ̃0

2 → µµ̃. However, to be included in our selec-
tion the two τ ’s in one decay chain must both decay to
leptons with the same flavor, which reduces the ratio. A
cut on lepton pT also helps to reduce this background,
since leptons from τ decays are softer. Experimentally
one should perform a separate search for hadronically de-
caying tau’s or non-identical-flavor lepton decay chains to

3
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FIG. 4: Mass solutions with all effects 1 – 7 included and after
cuts I – III for the SPS1a SUSY model and L = 300 fb−1.

explicitly measure this background.
(b) Processes containing a pair of sbottoms, especially

b̃1. In SPS1a the first two generations of squarks are
nearly degenerate. In any model, they must be discov-
ered in a combined analysis since light quark jets are
not distinguishable. Well-separated squark masses would
show up as a double peak structure in MZ . However b
jets are distinguishable and a separate analysis should
be performed to determine the b squark masses. This
presents a background to the light squark search since
b-tagging efficiency is only about 50% at high pT .

(c) Processes that contain a pair of χ̃0
2’s, not both com-

ing from squark decays. For these events to fake signal
events, extra jets need to come from initial and/or final
state radiation or other particle decays. For example, di-
rect χ̃0

2 pair production or χ̃0
2 + g̃ production. These are

electroweak processes, but, since χ̃0
2 has a much smaller

mass than squarks, the cross-section is not negligible. In
our SPS1a analysis, the large jet pT cut reduces this kind
of background due to the small meg − meqL

.
7. Experimental resolutions. In order to estimate

this experimental effect at the LHC, we process all events
with ATLFAST[12], a fast simulation package of the AT-
LAS detector. Since we assume 300 fb−1 integrated lu-
minosity, we run ATLFAST in the high luminosity mode.

The cuts used to isolate the signal are:
I) 4 isolated leptons with pT > 10 GeV, |η| < 2.5 and

matching flavors and charges consistent with our assumed
χ̃0

2 → #̃ → χ̃0
1 decay;

II) No b-jets and ≥ 2 jets with pT > 100 GeV, |η| < 2.5.
The 2 highest-pT jets are taken to be particles 7 and 8;

III) Missing pT > 50 GeV.
For a data sample with 300 fb−1 integrated luminosity,
there are about 1050 events left after the above cuts, out
of which about 700 are signal events. After taking all
possible pairs for all possible combinations and solving
for the masses, we obtain the mass distributions in Fig. 4.

Fitting each distribution using a sum of a Gaussian
plus a (single) quadratic polynomial and taking the maxi-
mum positions of the fitted peaks as the estimated masses
yields {77.8, 135.6, 182.7, 562.0} GeV. Averaging over

10 different data samples, we find

mN = 76.7 ± 1.4 GeV, mX = 135.4± 1.5 GeV,
mY = 182.2 ± 1.8 GeV, mZ = 564.4 ± 2.5 GeV.

The statistical uncertainties are very small, but there ex-
ist biases, especially for the two light masses. In practice,
we can always correct the biases by comparing real data
with Monte Carlo. Nevertheless, we would like to reduce
the biases as much as possible using data only. In some
cases, the biases can be very large and it is essential to
reduce them before comparing with Monte Carlo.

The combinatorial background is an especially impor-
tant source of bias since it yields peaked mass distribu-
tions that are not symmetrically distributed around the
true masses, as can be seen from Fig. 3. This will intro-
duce biases that survive even after smearing. Therefore,
we concentrate on reducing wrong solutions.

First, we reduce the number of wrong combinations by
the following procedure. For each combination choice, c,
for a given event, i (i = 1, Nevt), we count the number,
Npair(c, i), of events that can pair with it (for some com-
bination choice for the 2nd events) and give us solutions.
We repeat this for every combination choice for every
event. Neglecting effects 2.– 7., Npair(c, i) = Nevt − 1
if c is the correct combination for event i. After includ-
ing backgrounds and smearing, Npair(c, i) < Nevt − 1,
but the correct combinations still have statistically larger
Npair(c, i) than the wrong combinations. Therefore,
we cut on Npair(c, i). For the SPS1a model point,
if Npair(c, i) ≤ 0.75 Nevt we discard the combination
choice, c, for event i. If all possible c choices for event
i fail this criterion, then we discard event i altogether
(implying a smaller Nevt for the next analysis cycle). We
then repeat the above procedure for the remaining events
until no combinations can be removed. After this, for the
example data sample, the number of events is reduced
from 1050 (697 signal + 353 background) to 734 (539
signal + 195 background), and the average number of
combinations per event changes from 11 to 4.

Second, we increase the significance of the true solu-
tion by weighting events by 1/n where n is the number of
solutions for the corresponding pair (using only the com-
bination choices that have survived the previous cuts).
This causes each pair (and therefore each event) to have
equal weight in our histograms. Without this weighting,
a pair with multiple solutions has more weight than a pair
with a single solution, even though at most one solution
would be correct for each pair.

Finally, we exploit the fact that wrong solutions and
backgrounds are much less likely to yield MN , MX , MY ,
and MZ values that are all simultaneously close to their
true values. We plot the 1/n-weighted number of solu-
tions as a function of the three mass differences (Fig. 5).
We define mass difference windows by 0.6× peak height
and keep only those solutions for which all three mass
differences fall within the mass difference windows. The

Cheng et al, PRL 100, 252001 (2008)

Can reconstruct genuine mass peaks!

Relies on all decays being 2-body decays.

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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Other new techniques

- How to reconstruct masses in shorter decay chains?

- How to reconstruct masses in chains with 3-body decays?

- How to quickly determine overall new physics mass scale?

What about more inclusive observables?

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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MT2

Based on the transverse mass:

Define αi = (ET i, pxi, pyi,0),

ET i =
√
p2
xi + p2

yi +m2
i

Then M2
T ≡ (α` + αν)2.

(Depends on guessing right for mi...)

Classic use is W mass measurement.

14

(a)Dilepton invariant mass
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FIG. 2: (a) Dilepton invariant mass distribution for the process pp̄ → Z/γ → �+�−. From [46]. (b) Trans-

verse mass distribution for pp̄ → W → eν. The W boson mass is determined from a fit to the range indicated

with the double-headed horizontal arrow. From [47].

range of values of mW which are consistent with the observables b, /cT , and the known mass of the

lepton mB and the (negligible) mass of the neutrino m/C . The boundary of the allowed domain is

conveniently found by the explicit construction of the transverse mass, MT [48–50]:

M2
T ≡ m2

B + m2
/C + 2

�
ebe/c − bT · /cT

�
. (7)

The (lower case) “transverse energy” quantities e for each particle are defined by

e2 = m2 + p2
T . (8)

These e are equal to the ET quantities (also denoted “transverse energy”) defined in (4) in the

massless limit. The function in Equation 7 gives the largest value of mW consistent with the

observations; by construction, when the correct values of mB and m/C are used6, and in the ap-

proximation where the widths are narrow and experimental resolutions small, MT ≤ mA with

equality when the relative rapidity of the daughter particles vanishes. Therefore a histogram of

values of MT , for many events with the same topology, should populate some regions (correspond-

ing to allowed values of mW ) but not other regions, corresponding to disallowed values of mW .

The mass could then be determined from the boundary of the populated region – the kinematic

6 The results of hypothesising incorrect values for the mass of one of the particles are explored further in Section 4.2.

What about events with 2 invisible particles?
Don’t know ~pT of each invisible particle; only know their sum.

For each event:
- Construct both M2

T variables, with a guess for ~pT1 and ~pT2 that
gives correct total missing pT .
- Vary the guess until the larger M2

T is minimized.
This value is MT2. Lester & Summers, PLB463, 99 (1999)

Upper endpoint of MT2 distribution is the parent particle mass...
assuming that the invisible particle’s mass was guessed correctly!

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010
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MT2 kinks

MT2 really just gets you mass differences.

But features in the MT2

dependence in the plane of

the two masses can—in some

circunstances—get you the

actual masses.

Similarly for kinematic endpoint

observables: each event really

defines a boundary for the

allowed region in the space of

unknown masses.

Put together many observables

to nail down the true masses.
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FIG. 13: The points show how a measured upper bound of the MT2 distribution for pairs of three-body

decays (g̃ → qq̄) depends on the a prior unknown mass of the invisible particle. The red (blue) line shows

the configuration which is maximal for χ greater than (less than) m/C . The upper envelope of this pair of

curves gives the theoretical upper bound on MT2(χ). Notice the change in gradient in the envelope curve

near (97,780); the position of the kink corresponds to the simulated masses of the neutralino and the gluino

respectively. Adapted from [117].

configurations. The dependence of the MT2 distribution on the unknown mass of the invisible

daughter particle χ is therefore important. For a distribution of interest to depend upon an

unknown parameter might be seen as a disadvantage. But it is possible to turn this argument on

its head; the fact that the distribution of MT2(χ) depends on χ might allow us to simultaneously

extract both the mass of the parent and the mass of the invisible daughter.

To see how the dependence of MT2(χ) on χ can be made to help us, consider the envelope of

the maximum of the curves MT2(χ) over all events. In general different events will be maximal for

χ < m/C and for χ > m/C , so the function maxevents MT2(χ) can be continuous but non-differentiable

at the point (m/C , mA):

�
d

dχ
max
events

MT2(χ)

�

χ=m/C−
�=
�

d

dχ
max
events

MT2(χ)

�

χ=m/C+

.

This feature was first spotted in simulations of pairs of three-body gluino decays g̃ → qq̄χ̃0
1 [117]

(see also Figure 13) but has also been explored for simpler and more complex topologies [118–120].

The existence of this ‘kink’ in the MT2 endpoint makes it tempting to infer that it will be
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√
ŝmin

Right after discovery, we don’t have a lot of events, we haven’t

identified decay chains, we just want to know as much about the

new physics as possible.

What is the mass scale???

Define another variable:

√
ŝmin =

√
E2 − P2

z +
√
E2
T miss +M2

invis Konar et al, JHEP 0903, 085 (2009)

E = total calorimeter energy
~P = total visible momentum

Minvis = total mass of all invisible particles: a guess
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√
ŝmin gives the approximate kinematic threshold for the new

physics production.

Figure 3: Distributions of various
√

smin quantities discussed in the text, for the dilepton tt̄ sample

at the LHC with 14 TeV CM energy and 0.5 fb−1 of data. The dotted (yellow-shaded) histogram gives

the true
√

s distribution of the tt̄ pair. The blue histogram is the distribution of the calorimeter-based√
s
(cal)
min variable in the ideal case when all effects from the underlying event are turned off. The red

histogram shows the corresponding result for
√

s
(cal)
min in the presence of the underlying event. The black

histogram is the distribution of the
√

s
(reco)
min variable introduced in Sec. 2. All

√
smin distributions

are shown for "M = 0.

Fig. 3 also shows two versions of the calorimeter-based
√

s
(cal)
min variable: the blue (red)

histogram is obtained by switching off (on) the underlying event (ISR and MPI). These

curves reveal two very interesting phenomena. First, without the UE, the peak of the
√

s
(cal)
min

distribution (blue histogram) is very close to the parent mass threshold [1]:

no UE =⇒
(√

s
(cal)
min

)
peak

≈ Mp . (4.5)

The main observation of Ref. [1] was that this correlation offers an alternative, fully inclusive

and model-independent, method of estimating the mass scale Mp of the parent particles, even

when some of their decay products are invisible and not seen in the detector.

Unfortunately, the “no UE” limit of eq. (4.5) is unphysical, and the corresponding
√

s
(cal)
min

distribution (blue histogram in in Fig. 3) is unobservable. What is worse, when one tries to

measure the
√

s
(cal)
min distribution in the presence of the UE (red histogram in Fig. 3), the

resulting peak is very far from the physical threshold:

with UE =⇒
(√

s
(cal)
min

)
peak

% Mp . (4.6)

– 15 –

Konar et al, arXiv:1006.0653

Plot: dilepton events from tt̄ production. Assumes Minvis = 0.
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How to measure spins

SUSY: q̃

χ̃0
2

"̃∓
L

χ̃0
1

UED: Q1

Z1

"∓1

γ1

q

"± (near)

"∓ (far)

FIG. 10: Twin diagrams in SUSY and UED. The upper (red) line corresponds to the cascade decay

q̃ → qχ̃0
2 → q"±"̃∓L → q"+"−χ̃0

1 in SUSY. The lower (blue) line corresponds to the cascade decay

Q1 → qZ1 → q"±"∓1 → q"+"−γ1 in UED. In either case the observable final state is the same:

q"+"− /ET .

analogous decay chain Q1 → qZ1 → q!±!∓1 → q!+!−γ1 in UED [11, 12]. Both of these

processes are illustrated in Fig. 10.

FIG. 11: Lepton-quark invariant mass distributions in (a) UED with R−1 = 500 GeV and (b)

supersymmetry with a matching sparticle spectrum. We show separately the distributions with

the near and far lepton, and their sum. The positive (negative) charge leptons are shown in red

(blue).

Next, one forms the lepton-quark invariant mass distributions M!q (see Fig. 11). The

spin of the intermediate particle (Z1 in UED or χ̃0
2 in SUSY) governs the shape of the

distributions for the near lepton. However, in practice we cannot distinguish the near and

far lepton, and one has to include the invariant mass combinations with both leptons. This

tends to wash out the spin correlations, but a residual effect remains, which is due to the

26

figs from Battaglia, Datta, De Roeck, Kong, & Matchev, hep-ph/0507284

- Spins control angular de-

cay distribution in parent’s rest

frame.

- Polar angle of intermediate

particle decay related to invari-

ant masses of visible particle

pairs: e.g., q `near.

- Charge asymmetry to pick the

right lepton.
FIG. 12: Comparison of the charge asymmetry A+− defined in eq. (8) as computed in the case of

UED with R−1 = 500 GeV and the case of supersymmetry with a matching sparticle spectrum.

different number of quarks and antiquarks in the proton, which in turn leads to a difference

in the production cross-sections for squarks and anti-squarks [9]. The spin correlations are

encoded in the charge asymmetry [9]

A+− ≡
(

dN(q!+)

dMql

− dN(q!−)

dMql

)/ (
dN(q!+)

dMql

+
dN(q!−)

dMql

)
, (8)

where q stands for both a quark and an antiquark, and N(q!+) (N(q!−)) is the number of

entries with positively (negatively) charged lepton. Our comparison between A+− in the

case of UED and SUSY [11, 12] is shown in Fig. 12. We see that although there is some

minor difference in the shape of the asymmetry curves, overall the two cases appear to be

very difficult to discriminate unambiguously, especially since the regions near the two ends

of the plot, where the deviation is the largest, also happen to suffer from poorest statistics.

Notice that we have not included detector effects or backgrounds. Finally, and perhaps most

importantly, this analysis ignores the combinatorial background from the other jets in the

event, which could be misinterpreted as the starting point of the cascade depicted in Fig. 10.

Overall, Fig. 12 shows that although the asymmetry (8) does encode some spin correlations,

distinguishing between the specific cases of UED and SUSY appears challenging. These

results have been recently confirmed in [14], where in addition the authors considered a

study point with larger mass splittings, as expected in typical SUSY models. Under those

27
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What about top and bottom of chain?

If we can reconstruct the full kinematics of decay chain, can

boost to any particle’s rest frame and examine angular distribu-

tions of production and decay. Cheng et al, arXiv:1008.0405

Can do it if there are enough mass-shell constraints (long enough

chain) and masses are known (from mass extraction techniques).

- Reconstruct full kinematics (3 visible daughters are enough)

- Boost to a particle’s rest frame

- Look at decay distribution: polynomial in cos θ of degree 2S

→ Get particle spin

- Measure polarization axis relative to boost direction

→ Spin correlation between 2 chains in event

LSP is harder, but can tell whether it’s a fermion or boson by

angular momentum conservation in its parent’s decay.

Heather Logan (Carleton U.) SUSY (4/4) HCPSS 2010

35



Summary

Reconstructing SUSY masses requires sophisticated techniques

Tremendous progress in past ∼ 5 years

Useful not just for SUSY but for any theory with pair production

and decays to an invisible particle (generic models of dark matter

from a new parity-odd sector)

Once masses are found, missing-momentum reconstruction is a

valuable tool for spin determination
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