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On the Positron Fraction and Cosmic-Ray Propagation Models
B. Burch and R. Cowsik
Washington University in St. Louis, St. Louis, MO 63130, USA

The positron fraction observed by PAMELA and other experiments up to ∼ 100 GeV is analyzed in terms of
models of cosmic-ray propagation. It is shown that generically we expect the positron fraction to reach ∼ 0.6 at
energies of several TeV, and its energy dependence bears an intimate but subtle connection with that of the boron
to carbon ratio in cosmic rays. The observed positron fraction can be fit in a model that assumes a significant
fraction of the boron below ∼ 10 GeV is generated through spallation of cosmic-ray nuclei in a cocoonlike region
surrounding the sources, and the positrons of energy higher than a few GeV are almost exclusively generated
through cosmic-ray interactions in the general interstellar medium. Such a model is consistent with the bounds
on cosmic-ray anisotropies and other observations.

1. Introduction

The recent observation of the positron fraction in
cosmic rays by PAMELA [1] has created much ex-
citement because of its possible connection with the
annihilation or decay of dark matter in the Galaxy
or with a variety of astrophysical processes (see [2]
for references to these discussions). These suggestions
were prompted by the recognition that the energy de-
pendence of the positron fraction cannot be fit by the
comprehensive propagation model (solid line in Fig.
1) developed by Moskalenko and Strong (M-S) [3, 4].
In Fig. 1, we show the PAMELA observations of the
ratio, R, of the positron flux to that of the total elec-
tronic component in cosmic rays along with earlier
observations [5–7]. The PAMELA measurements have
been called anomalous as they do not conform to the
predictions of the M-S model. Accordingly, new mod-
els of cosmic-ray propagation have been discussed (see
references in [2]).

General arguments based on cosmic-ray propaga-
tion models indicate that the positron fraction should
increase at high energies and asymptotically reach a
value of ∼ 0.6 at the highest energies. We note that γ-
ray astronomy has shown that cosmic rays generated
in the sources suffer nuclear interactions in the prox-
imity of the sources [8–15]. This has a strong bearing
on the models of cosmic-ray propagation in that if
a fraction of the B/C ratio observed in cosmic rays,
especially at energies below ∼ 10 GeV, is generated
in a dense cocoonlike region surrounding the sources,
then the contribution from spallation in the general
interstellar medium would have a flat or a weak de-
pendence on energy. Such a model [16–18] is shown
to fit the PAMELA observations and to be consistent
with the high degree of isotropy observed in cosmic
rays at high energies [4, 19–21].

2. Positron Fraction at High Energies

The asymptotic value of the positron fraction is es-
timated by noting that cosmic rays observed near the

Earth are accelerated in a set of discrete sources dis-
tributed over the Galaxy [22, 23], which accelerate
mostly electrons rather than positrons, as the Galaxy
is made up of matter rather than antimatter. During
the diffusive transport, the electronic component suf-
fers loss of energy due to synchrotron radiation and
inverse-Compton scattering on the microwave back-
ground and other photons. As this loss increases
quadratically with energy as bE2, the spectrum of the
electronic component is sharply cut off at high en-
ergies. Solutions to the diffusion equation [18, 23],
which include the energy losses by electrons, yield a
spectrum that cuts off as

Fe(E, rn) ∼ exp

(
− br2nEEx

4κ(Ex − E)

)
. (1)

Here, rn is the distance to the nearest source, Ex is
the maximum energy up to which the sources acceler-
ate electrons, the diffusion constant κ ≈ 1028 cm2s−1,
and b ≈ 1.6 × 10−3 GeV−1Myr−1. Thus even for a
very large value of Ex, the directly accelerated elec-
tron spectrum is cut off at Eb ≈ 4κ/(br2n) ≈ 100
GeV/(rn/kpc)

2. The cutoff in the spectrum at ∼ 1
TeV observed by the HESS instrument [24] indicates
the presence of cosmic ray sources within ∼200 pc of
the solar system. If this is taken to be the typical
spacing between the sources in our Galaxy, then we
expect about 104 sources in this disk within a radius of
∼15 kpc [23]; accordingly, each of these sources need
only to generate a very small fraction of the cosmic
ray luminosity of the Galaxy, on the average.
We do not expect the secondary electrons and

positrons to exhibit such a cutoff because, unlike the
discrete sources of primary electrons, the source func-
tion for the secondary component extends from the
nearest proximity to the solar neighborhood to far-off
distances. The secondary positrons and electrons are
generated through the π± → µ± → e± decay chain,
the pions being produced in high-energy interactions
of cosmic rays with the matter in interstellar space,
both of which are distributed rather smoothly, with-
out large overall gradients. Accordingly, the effects of
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Figure 1: The positron fraction measured by PAMELA
and earlier measurements are shown. Gradient drifts in
solar modulation may account for some of the difference
in the data at E < 10 GeV [1]. The prediction of the
positron fraction expected in the M-S model is shown as
a solid line and in the NLB model as a dashed line.

the energy loss are less severe and the index of the sec-
ondary electron spectrum at low energies is the same
as the source spectrum, which is the same as that of
the nucleon spectrum [25–27]. At high energies, the
secondary spectra of positrons and electrons steepens
by one additional power.

Fs(E) ∼ E−β for E ≪ Ec

Fs(E) ∼ E−(β+1) for E ≫ Ec (2)

where β = 2.65 and Ec ∼ 100− 200 GeV.
This spectrum of the secondary electronic com-

ponent will progressively dominate over that gener-
ated by the discrete sources. This implies that at
very high energies, the positron fraction simply corre-
sponds to that in the production process in the high-
energy collisions of cosmic rays. The fact that the
p/n fraction in primary cosmic rays is greater than
unity favors the production of e+ over e−, reflecting
the slightly greater production of π+ compared with
π−. Whereas the theoretical calculations [26, 27] yield
Fs+/Fs− ≈ 1.5− 2, the direct observations of µ+/µ−

produced by cosmic rays in the Earth’s atmosphere
yields Fs+/Fs− ≈ 1.3 [28]. Then, for E >∼ 1 TeV

Rs(E) → Fs+(E)

Fs+(E) + Fs−(E)
≈ 0.6. (3)

We may expect that such a large value of R will be
reached at E > 1 TeV, say beyond several TeV.

3. Energy Dependence at Moderate
Energies

3.1. Residence Time of Cosmic Rays

There are two classes of models for cosmic-ray prop-
agation with which to explain the measurements of the

Figure 2: The observed B/C ratio [29–35] with the
predictions from the M-S and NLB models are shown.

primary and secondary nuclei in cosmic rays as show
in Fig. 2. In the M-S model, the secondary produc-
tion is distributed throughout the Galaxy, and the ob-
served decrease with energy of the ratio of secondary
to primary nuclei is explained by an effective residence
time of cosmic rays in the Galaxy decreasing with en-
ergy [3, 4, 36]. This decrease may be parameterized
beyond a few GeV/n by

τL(E) ∼ τL0(E0 + E)−∆ ≈ τL0(E0 + E)−0.5 (4)

where E0 ≈ 4 GeV/nucleon, and we have indicated
∆ ≈ 0.5 to reflect the full range 0.33 ≤ ∆ ≤ 0.7 of the
M-S models currently under discussion in literature.
The value of τL0 ≈ 0.4 is in units of T0, and E and E0

are expressed in GeV. Models of this class, which may
be approximated by a leaky-box (LB) model [25, 37],
produce a nuclear secondary to primary ratio such as
that given by the dotted lines in Fig. 2. Note here
that the LB model approximates the predictions of
the M-S model also shown in Fig. 2. The second
class of models takes explicit account of significant
secondary production in dense regions in the vicinity
of the primary cosmic-ray sources. Such a model may
be realized as a nested leaky-box (NLB) [16, 17].

3.2. Including Spallation in the Source
Regions

In the NLB model, it is assumed that subsequent
to the acceleration, the cosmic rays spend some time
in a cocoon-like region surrounding the sources, inter-
acting with matter and generating some of the secon-
daries, mainly at low energies. Such interactions will
also generate gamma rays through the π◦ → 2γ de-
cay and could be observed by space-borne gamma-ray
telescopes like FERMI [38, 39]. Since, according to
the arguments summarized in Section 2, the average
luminosity of a cosmic-ray source is rather low, their
gamma-ray emission will be detected only in some
favorable cases. The effective residence time in the
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cocoon, τc(E), is energy dependent, with the higher
energy particles leaking away more rapidly from the
cocoon. After they leak out of the cocoon into the
interstellar medium, the cosmic rays at all energies
up to several hundred TeV reside for an effective time
τG before they escape from the Galaxy. In the NLB
model, the observed energy dependence of the nu-
clear secondary to primary ratio is fit with an energy-
dependent leakage time τc(E) out of the cocoon and
with a leakage time τG out of the Galaxy that is in-
dependent, or nearly independent, of energy up to
∼1 PeV. These two contributions are depicted by the
dashed lines in Fig. 2, and their sum is shown as a
chain-dotted line. This shows that the residence time
for cosmic rays inside the cocoon has a progressively
steeper dependence on energy, and τc(E) and τG may
conveniently be parameterized as

τc(E) ∼ τC0E
ϵ−δlogE , τG ∼ constant

τN = τc(E) + τG. (5)

Here, the lifetimes τC , τG, and τN are in T0 units
and take on values τc0 ≈ 0.24 and τG ≈ 0.08 when E
is expressed in GeV, with the parameters ϵ = −0.01
and δ = 0.13. The cocoon should have a high den-
sity so that adequate spallation might take place in
the short amount of time that the cosmic rays spend
around their sources. Circumstellar envelopes, dark
clouds, molecular clouds, and giant molecular com-
plexes are some of the candidates that may serve as
cocoons. These have widely ranging densities, from
∼ 107 cm−3 down to ∼ 102 cm−3 [40], and the cosmic
rays need to spend anywhere from 10 yr to 105 yr in
these regions to generate the requisite B/C ratio at
∼ 1 GeV. Since the dimensions of these regions are in-
versely correlated with their densities, such residence
time in the cocoon may be generated with diffusion
constants in the range of 1026 − 1028 cm2 s−1.

Both LB and NLB models can provide adequate
fits to the nuclear secondary to primary ratios ob-
served to date, even though the difference between
them becomes progressively larger at higher energies.
Whereas the LB models require an effective galactic
residence time, τL(E), progressively decreasing with
energy, the NLB models fit the data on cosmic-ray
nuclei with a constant residence time τG at high en-
ergies. Accordingly, LB models predict cosmic-ray
anisotropies that increase with increasing energy, in
conflict with the observations [4, 19, 20]. In con-
trast, NLB models predict constant anisotropies up
to several hundred TeV, consistent with the obser-
vations as show in Fig. 3. To be specific, the ex-
pected anisotropies, δ(E), are inversely proportional
to the effective residence time of cosmic rays in the
Galaxy. Accordingly, the anisotropy in the NLB
model δNLB(E) is given by

δNLB(E) =
τLB(E)

τG
δM−S(E)

Figure 3: Measurements of the cosmic-ray anisotropy
from various compilations [4, 19–21]. Also plotted are the
predictions from models in Moskalenko and Strong (MS)
[4] and the results from Eq. 6 (CB). The gray region
shows the predicted anisotropy from Eq. 7.

≈

(
100 GeV

E

)∆

δM−S(∆, E). (6)

Here, δM−S(∆, E) refers to the anisotropy in the M-
S model calculated for the two values ∆ ≈ 0.3 and
∆ ≈ 0.6 [4], and 100 GeV refers to the energy at
which τL(E) and τG intersect in Fig. 2. When their
estimates are rescaled for the NLB model, according
to Eq. 6, the expected levels of anisotropy become
consistent with the observational limits [4, 19–21].
We can also directly estimate the anisotropy param-

eter δNLB using the standard formula in cosmic-ray
literature [4]

δNLB =
3κ∇ρ

cρ
≈ 3κ

h0c
≈ 3× 10−4 (7)

where h0 ≈ 1 kpc≈ 3× 1021 cm is the scale height of
the distribution of the cosmic rays above the Galac-
tic plane and κ ≈ 1028 cm s−2 is the diffusion con-
stant of cosmic rays in the interstellar medium. This
anisotropy is shown in Fig. 3 with an uncertainty of
∼ 200% as a gray band. Note this estimate matches
the values of anisotropy scaled down from the M-S cal-
culations using Eq. 6. Below ∼ 1 TeV, the magnetic
fields in the solar system, anchored at the Sun, pre-
vent dipole anisotropies from being observed. Above
∼ 1 PeV, as we approach the knee in the cosmic-ray
spectrum, the particles escape with increasing rapid-
ity from the galactic volume, causing the anisotropy
to increase. Keeping these factors in mind, we note
that the anisotropy levels expected in the NLB model
is consistent with the observations.
Another difference between the two models is that

they require different input spectra to be generated by
the sources. To see this, let sn(E) represent the spec-
trum of nuclei accelerated by the source by written
as

sn(E) = sn0E
−α. (8)
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Since in the LB model these nuclei have a lifetime
τL(E) and an interaction lifetime (cnHσint)

−1, the
spectrum of cosmic-ray nuclei in the interstellar space
becomes

Fn(E) = sn(E)
τL(E)

1 + cσintnHτL(E)
(9)

≈ sn(E)τL(E) = snτL0(E0 + E)−∆ = sn0τL0E
−α−∆

for E ≫ E0.
Here (cσintnH)−1 is the effective mean free path for

the loss of cosmic rays at a particular energy through
nuclear interactions. In order to match the observed
spectrum of cosmic rays with Fn(E) = F0E

−β in the
LB model, we need to set α+∆ = β ≈ 2.67. Thus

sn(E) = sn0E
−β+∆ ∼ E−2.2. (10)

The calculation of the source spectrum in the NLB
model, snc(E) = sc0E

−ξ, is a two-step process. The
spectral density inside the cocoons is the product of
snc(E) and the leakage lifetime inside the cocoon:

Fc(E) = snc(E)τc(E) = snc(E)τc0E
ϵ−δ logE . (11)

These leak out into the interstellar space at a rate
inversely proportional to the leakage lifetime from the
cocoon so that

Fn(E) = Fc(E)
1

τc(E)
= snc(E) = sc0E

−ξ. (12)

Thus to match with the observed spectrum of cosmic
rays with Fn(E) ∼ E−β we need ξ = β. This means
that the observed cosmic rays have spectra identical
to that accelerated by the sources, especially at high
energies where losses due to ionization and nuclear
interactions are small in the source regions.

3.3. Derivation of the Positron Fraction

In assessing the positron fraction in the NLB mod-
els, we note that the secondary nuclei, such as B,
which are generated by the spallation of primary nu-
clei like C, have the same energy per nucleon as their
progenitors. By contrast, positrons carry away, on the
average, only about 5% of the energy per nucleon of
their nuclear progenitors [3, 26, 27]. This implies that
even though a significant amount of B is generated
through spallation within the cocoon, very little pro-
duction of positrons at energies beyond 5 GeV occurs
there. This is because the progenitors of the positrons
with E ≥5 GeV should have energies beyond about
100 GeV per nucleon and would rapidly leak out of
the cocoon before they suffer significant nuclear in-
teractions (see dashed line in Fig. 2). Thus, in the
M-S model with energy-dependent path-length distri-
butions, and in the NLB models, we expect the source
function for the positrons to be the same – it is simply

proportional to the product of the observed spectrum
of the cosmic-ray nuclei and the density of the inter-
stellar medium and has the spectral form s0E

−β . Be-
low ∼100 GeV, where the radiative energy losses are
not significant, the observed positron fluxes would be
the product of this source function and the residence
time of cosmic rays in the Galaxy, τL(E) or τG, as
relevant to the model under consideration.
The calculation of the positron ratio in the two

classes of models is straightforward when we note that
its source spectrum S+G(E) in the interstellar medium
is generated through nuclear interactions [26] and has
a nearly identical spectrum to that of the parent nu-
clei, F0E

−β , except that it is shifted down in energy
by a factor η ≈ 0.05 and multiplied by the rate of
nuclear interactions

S+G(E) ≈ σinnHF0η
β−1E−β . (13)

Here, σin is the inclusive cross section for the produc-
tion of π+, which carries off a fraction η of the energy
per nucleon of the primary cosmic-ray nucleus. The
factor ηβ−1 in Eq. 13 accounts for the shift in the
energy and the change in the energy bandwidth when
transforming from the spectrum of the primary nuclei
to that of the positrons. The source function is the
same for both the M-S and NLB models. In the NLB
model, there is an additional small contribution S+c

due to positron generation from nuclear interactions
in the cocoon. Taking the expression for the spectral
density for the nuclei in the cocoon from Eq. 11 shows

S+c(E) ≈ cσinnHcsncη
−ϵ+β−1+δlog(E/η)

×Eϵ−β−δlog(E/η). (14)

However, this contribution is entirely negligible be-
yond a few GeV. Therefore the steady state spectra
F+LB(E) and F+NLB(E) are essentially given by the
product of the source function and the effective life-
time of the positrons in the Galaxy. At energies below
∼ 100 GeV the radiative losses are small and the effec-
tive lifetimes in the two models are essentially given
by the leakage lifetime τL(E) or τNLB ≈ τG, respec-
tively. Thus the positron spectra in the two models
are given by

F+LB = S+G(E)τL(E)

∼ E−β(E0 + E)−∆ ∼ E−(β+∆); (15)

F+NLB(E) = S+G(E)τG ∼ E−β . (16)

In order to estimate the positron fraction in the
two models, we divide the positron fluxes F+LB and
F+NLB by the spectral intensities of the total elec-
tronic component in cosmic rays. A recent compila-
tion of the observations of the total electronic com-
ponent can be found along with a smooth fit to the
data that includes a slight enhancement in the inten-
sities below ∼ 1 GeV, which corrects for the effects of
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modulation by the solar wind can be found in Cowsik
and Burch [18]. It is straightforward to take ratios of
these spectra and compare the theoretically expected
positron fraction in the two models with the observa-
tions shown in Fig. 1. At high energies, the spectra of
positrons being essentially power laws in both the LB
and NLB models, the shape of the positron fraction
is controlled by the spectrum of the total electronic
component. Thus, at high energies, we have

RNLB ∼ S+(E)τG/F±(E)

∼ E−2.65/E−3.1 ∼ E0.45 (17)

RM−S ∼ S+(E)τL/F±(E)

∼ E−2.65E−∆/E−3.1 ∼ E−0.2 (18)

We see in Fig. 1 that the NLB model shows the
positron fraction increasing with energy at high en-
ergies and the M-S model shows a declining positron
fraction at high energies.

4. Conclusions

We see that the nested leaky-box model pro-
vides a satisfactory fit to the PAMELA observations.
This analysis obviates the need for exotic sources
of positrons, suggested by comparison between the
PAMELA data and the M-S propagation model, and
shows that the data may be accounted for by NLB
propagation models. Since NLB models also relieve
the anisotropy problem encountered in the LB/M-S
class of models and qualitatively accommodate the ob-
servations of π0 gamma rays from regions near cosmic-
ray sources, we conclude that the rising positron frac-
tion observed by PAMELA is the natural result of
cosmic-ray interactions in the interstellar medium.
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