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Main Phenomena Limiting Bunch Compression

B |ongitudinal instability
B Non-linearity of compressing RF fields
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Criterion of Longitudinal Beam Stability

B For continuous beam
¢ Equa’rlon of motion
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¢ It resultsin the dispersion equation
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B At the stability boundary Im(sw)=0 or Im(y)=0
B Thus, the stability boundary is characterized by the distribution
function shape and one parameter
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Gp~fn(X) fn(x) — L_exp

Stability Criterion and Growth Rate o« ' .
B Finally, stability boundary is 03 b o [
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B For "rectangular” distribution there is ° Y Xo

no significant difference in stability
thresholds above and below transition 2
B In practice
¢ Im(Z,) > Re(Z,),
¢ Longitudinal injection painting
creates truncated tail
—Stability condition can be

Im(A(y))

el, Z,
. | Snl<2
approximated as| 2zcp,fno,’\ n -3

B Well above stability threshold: 4 N 7&0, -4 ————
Re(A(V))
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Longitudinal Impedance

B |ongitudinal impedance has three
major contributions
¢ Space charge
e For round beam & vacuum
chamber with radius a

Z(a)n):i Z, In( a j
n pr? \1.060

¢ Resistive wall
e For round beam & vacuum

chamber
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¢ Effect of RF cavities, vacuum chamber discontinues, etc. can be
controlled by machine design and dampers (f < 100 MHz)

B Space charge contribution does not depend on frequency and

dominates at all frequencies if an appropriate attention was paid to

the vacuum chamber electrodynamics and E < 20 GeV
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Simple Stability Criterion

B At high frequencies, 4, ~nawyn(Ap/p)>>wo,, the continuous beam theory

can be used for bunched beam
B We assume

¢ The space charge impedance dominates (< 20)

¢ Before compression the bunch has uniform density and length L,

¢ Conservation of longitudinal impedance:
o,L, =const - before and after compression

r NL a
A In( j <1
B Then ,827/377(0p L, )ﬁn 1.060

B |et's rewrite it for beam power
1327/377(0'pr) :

fin

P <M c?(y —1)f

max rep
roLini In( a j
1.060
¢ Very steep dependence on beam
energy

¢ For 8 GeV and above an operation
well above transition maximizes »
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Dependence of Maximum Power on Parameters

B Assume
¢ Operation well above transition
e Small tune
e Large dispersion reduces the space charge tune shift

¢ Slip-factor (momentum compaction) increase is limited by the

D AX
horizontal beam size in dipoles 7%~ "~ ;g "

¢ Momentum spread is limited by machine chromaticity
B For rough estimate it yields:

4 2
f L
P..~0.72MW E rep . 10m
8GeV ) | 15Hz ){ 60cmx1% L

init
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What RCS can do?

B 340 kW with 3 turn injection from RCS to the compressor ring at 8
GeV
¢ Compressor ring length = 1/3 of RCS
¢ 2 ns single bunch as required for muon collider
B 1 MW will require
¢ 3 mA current from CW linac
e 6 MVinstalled CW RF
e Or Transition to pulsed linac
e Or Combination of CW and pulsed RF
¢ 20 Hz repefition rate
e ftripling RCS RF power
e doubling RCS RF voltage

e Foilis OK
B Pulsed linac of ICD-I at 15 Hz will result approximately the same
power

B Pulsed linac of ICD-2 can achieve 1 MW with laser injection only
¢ Thin flat stream of liquid Li requires more insight
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Numerical example for “ultimate” 4 MW ring

B Maximum possible slip factor
¢ Itsvalue is limited by beam size at high dispersion regions
B 4 T superferic dipoles
B 2T at beam boundary for quadrupoles
B Racetrack with minimum reasonable length of straight lines
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Major

parameters of longitudinal dynamics

Compressed beam
Desired: 5,=0.01, 5,=60 cm

RF voltage: V=3 MV (q=1)

Bunch field: E,,xC = 350 kV

Rotation time: 136 turns ( 1/(4vs) )

Bucket height: Ap/p=0.041

Peak beam current: 4.4 kA

Number of Cavities = 5

Per cavity: R/Q=25 Q, Q=350, Pgen=20 MV
Injected beam

Nini=Le/C=0.22 = Peak beam current=150 A
Injection time: 1800 turns

for 80 mA peak linac current (18 mA average)

Initial momentum distribution assumed to be close to Gaussian one
Stability margin ~ 3 (cpin=5.3-10 requires linac beam debunching)

Zn/Nailowed=14 Q (for Gaussian distribution)
Zn/ nSpaceCharge:5 Q
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Simulations of injection and bunch rotation
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Nonlinearity of RF wave form does not make a major contribution
Further reduction of bunch length will reduce the stability margin to ~1
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Transverse stability
B Assume

¢ resistive wall makes major contribution (Cu, 2h=6 cm)
Eigen-values
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For continuous beam For compressed beam
¢ Transverse damper is required during injection and bunch
compression
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Conclusions

B ICD-2 can deliver ~340 kW at 10 Hz with required bunch length
B Tt |looks feasible to achieve 4 MW at 15 Hz with 12 GeV beam
B It requires
¢ 12 GeV linac with large beam current from linac (~30-100 mA)
which cannot be supported CW linac of ICD-2
¢ Or synchrotron with ~20 GeV energy
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