Upsilon Polarization at CDF

James Russ
Carnegie Mellon University
on behalf of the
CDF Collaboration

High Energy Vector Meson Production Mechanisms

- Long history of theoretical models to try to match vector meson data from Tevatron and HERA
 - cross section *problem* \Rightarrow CSM \rightarrow NRQCD
 - polarization problems with NRQCD \Rightarrow multi-gluon models
 - recent theoretical considerations raise questions about \mathbf{k}_{T} factorization approach, Q fragmentation effects at Tevatron energies
- See recent review by J.-P. Lansberg for summary of theoretical situation (arXiv:0811.4005)

CDF Experimental Results

- This talk's focus: Features of CDF results on vector meson polarization
 - Y(1S) polarization from 2.9 fb⁻¹ integrated luminosity
 - Update plans from 4.8 fb⁻¹ integrated luminosity
- Future developments and request for theoretical input

Measuring Polarization

- Polarization produces an angular asymmetry: $dN/d(\cos \theta) \propto 1 + \alpha \cos^2 \theta$
 - what axis? The size of α depends on frame.
 (aside: think of electron polarized along z-axis. If you measure spin along some other direction with direction cosine γ, the maximum polarization is γ.)
 - historically, low p_T fixed target experiments have analyzed in Collins-Soper frame.
 - high p_T collider experiments have used schannel helicity frame

Example: Prompt J/ψ Polarization

Prompt polarization in s-channel helicity frame

PRL 99, 132001 (2007) 0.8 fb⁻¹

more longitudinal as $p_T(\psi)$ increases

 Consistent with multi-gluon models but not NRQCD

What About Y Polarization?

- Is c quark is too light for factorization?
- Consensus: Y(ns) polarization at high m_T is acid test for NRQCD.

- CDF Run I Y(1S) polarization does not show T polarization, but limited m_T range.
- D0: trend toward T polarization?

CDF Y Analysis - I

- For Y(1S) analysis with 2.9 fb⁻¹
 - 82K Y(1S) signal events after sideband subtraction
 - S/B ~ 2:1 in all angular bins
- CDF cos θ and p_T resolutions are good:
 - $\Delta(\cos\theta)/\cos\theta = .011 \text{ for } p_T \sim 2 \text{ GeV/c}$ $.006 \text{ for } p_T > 8 \text{ GeV/c}$

$$\Delta$$
 p_T / p_T < .015 for p_T ~ 2 GeV/c < .010 for p_T ~ 20 GeV/c

Typical Mass Fits in Angle Bins

Y(1S) mass fits using Double Gaussian fit to MC for $2 < p_T < 3$ GeV/c:

- bkg is small but not simple
- fit for mass peak and bkg in each angular bin
- Fit determines signal region to count D_i and determine the backgnd B_i .

CDF Y Analysis - II

- Follow methodology of J/ψ analysis:
 - make templates for L, T polarization to incorporate trigger, acceptance conditions: $E = \eta L + (1-\eta)T$
 - Use sideband angular distribution B_i to estimate signal angular distribution for polarization analysis.
 - Make simultaneous fit to polarization parameter η and background $β_i$ in cos θ bins improves background estimate by using bin-to-bin correlations
- $\chi^{2} = \Sigma \left[(D_{i} \beta_{i} E_{i} (\eta))^{2} / D_{i} + (B_{i} \beta_{i})^{2} / B_{i} \right]$
- D_i is the total data in the signal region, not just the signal

Run II and CDF-I Polarization

- Polarizationis small forp_T < 20 GeV/c
- New data show trend toward L polarization at large p_T

Difference in |y| coverage (0.4 vs 0.6) doesn't have big effect

NRQCD Y(1S) Polarization

- Y(1S) prompt polarization, including feed-down from χ_b , Y(nS).
- Green is NRQCD including feeddown (Braaten and Lee, PRD 63, 071501 (2000))

11

CDF Disagrees with D0

Trends are totally different.

Does |y| matter?

D0: |y| < 1.8

CDF: |y|<0.6

D0 paper: "We

expect the CDF and D0 results to be similar and have no explanation for the observed difference." Same remarks apply here – no explanation.

Trying to Understand CDF/D0 Difference

Can we tell if low pT Y(1S) data are polarized?

- Generate unpolarized decays with Monte Carlo:
 - Processed in same way as data
 - Normalize to number of events in data and overlay <u>no fitting</u> involved.
- See good agreement
- CDF data do not support
 D0 claim of longitudinal
 polarization at low p_T

CDF/ D0 Differences

D0: Smooth data-driven backgnd shape under all mass peaks for each angle, p_T bin.

CDF: Two independent analyses:

make mass fits, backgnd for each Y(nS) peak; or define mass peak and plot angular distribution.

Use sideband background subtraction in each case.

Polarization results are consistent between the two methods.

Polarization Summary

- CDF prompt vector meson polarizations show trend toward L polarization at high p_T in s-channel helicity frame
- Multi-gluon models predict this kind of behavior, but
 - models go L at lower p_T than data
 - models are for *direct* production data are prompt
- Backgrounds have angular structure. How much is due to Drell-Yan?

Near-Term CDF Plans

- Nearly done doubling CDF data set the plan:
- Update Y(nS) polarization measurements in helicity, frame
- Make first high energy collider analysis in Collins-Soper frame for Y(nS) state.
- Measure $χ_b$, feed-down fractions for Y(1S)

Summary

- Vector Meson polarization studies at hadron colliders benefit from excellent mass resolution because of complicated background angular behavior.
- Prompt production is readily measured. Determining the direct production fraction is much harder but was done in Run I. It's important for comparing to theory.
- These methods can extend the p_T reach of such measurements toward 100 GeV/c at LHC.

Questions for theorists:

- Looking past polarization to cross-section work:
 - What is the prediction for Y production isolation in multi-gluon models?
 - What cone size? What track p_T? Measure p_T relative to Y or proton?
 - Is there physics interest to identify DY component of dimuon continuum and measure polarization?
 - What is the predicted high p_T differential cross section shape? Models undershoot present data.