

Measurements of Top Quark Properties at the Tevatron

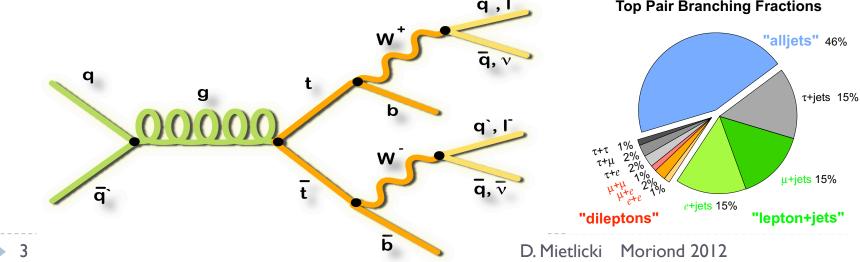
David Mietlicki, University of Michigan

On behalf of the CDF and D0 Collaborations

Why Study the Top Quark?

Unique among quarks in many ways

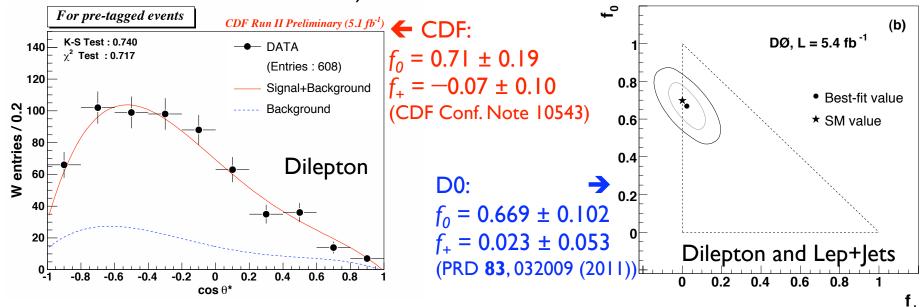
- Very heavy special role in electroweak symmetry breaking or enhanced couplings to new physics?
- Very short lifetime spin information and other properties passed directly to decay products
- ▶ CDF and D0 have collected thousands of top events
 - Precision studies of top properties are possible
 - Many analyses are unique to the Tevatron and/or complementary to LHC measurements
- Covered today:
 - W helicity in top decay
 - Branching ratio
 - Top width
 - Spin correlations
 - ▶ Top forward-backward asymmetry


Measuring Top Properties

- Top almost always decays to Wb
 - Decay modes characterized by W decays
- Two main modes for top properties analyses:
 - ▶ Lepton+Jets: one W decays to quarks, one to $e(\mu) + \nu$
 - Moderate backgrounds, reasonable branching ratio; fully constrained kinematically
 - Usually require a b-tag to reduce backgrounds
 - Dilepton: both W's decay to $e(\mu) + \nu$

Very low backgrounds, but small branching ratio; under-constrained kinematically

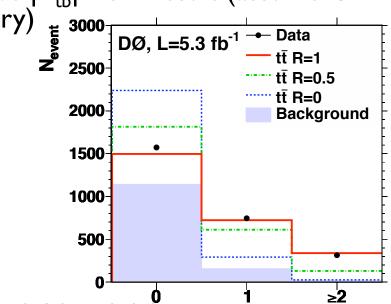
q, I


Top Pair Branching Fractions

W Boson Helicity in Top Decays

$$\omega(\cos\theta^*) \propto 2(1-\cos^2\theta^*)f_0 + (1-\cos\theta^*)^2 f_- + (1+\cos\theta^*)^2 f_+$$

- Study V-A nature of Wtb coupling
- Extract f_0 , f_+ from distribution of θ^* (angle between lepton and top direction in W rest frame)



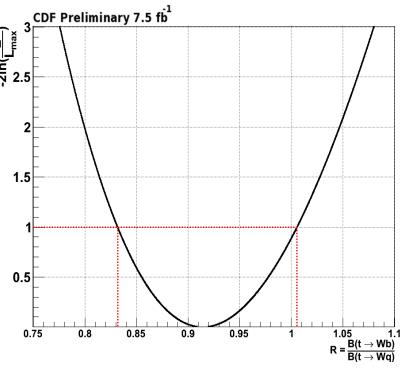
First Published CDF and D0 Combination (arXiv:1202.5272[hep-ex]):

$$f_0 = 0.722 \pm 0.081$$

 $f_+ = -0.033 \pm 0.046$

Top $(t \rightarrow b)$ Branching Ratio

- ▶ SM: $t \rightarrow Wb$ in ~100% of decays
- ▶ Expect 2 b's in each top-antitop event
 - How often does this happen?
 - Tagging efficiency determines expected size of samples with 0, 1, or 2 tagged jets
 - Determine *R* from measured size of each subsample
- Derive |V_{tb}| from result (assume CKM unitary) ≠ 3000

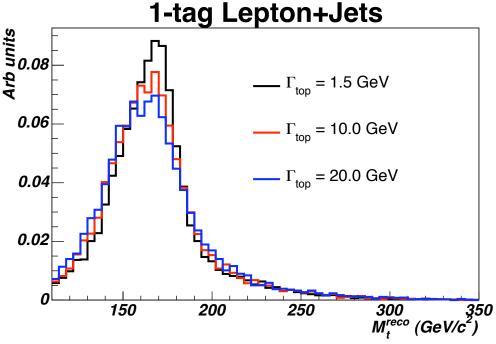


 $D0: R = 0.90 \pm 0.04$

$$|V_{tb}| = 0.95 \pm 0.02$$

PRL **107**, 121802 (2011)

$$R = \frac{B(t \to Wb)}{B(t \to Wq)}$$

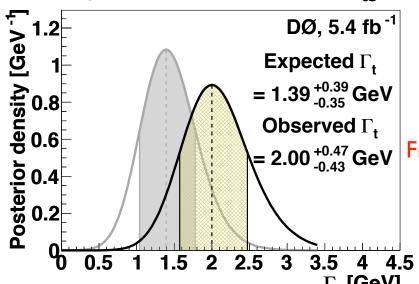

CDF: $R = 0.91 \pm 0.09$

$$|V_{tb}| = 0.95 \pm 0.05$$

CDF Conf. Note In Preparation

Top Width at CDF

- CDF: template method
 - ▶ 4.3 fb⁻¹
- Direct measurement of top decay width
 - Likelihood fit to the reconstructed top mass distribution based on templates with various input widths



PRL 105, 232003 (2010)

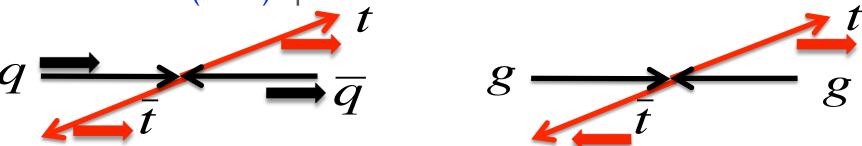
0.3 GeV <
$$\Gamma_{\rm t}$$
 < 4.4 GeV at 68% C.L. $\Gamma_{\rm r}$ < 7.6 GeV at 95% C.L.

Top Width at D0

- ▶ D0: derived measurement based on other top properties results
 - Complementary to CDF measurement
- Requires theory input, but gains in sensitivity
- Also provides a limit on |V_{tb}|

$$\Gamma_{t} = \frac{\Gamma(t \to Wb)}{B(t \to Wb)}$$

From top pair production From t-channel single top


$$\Gamma(t \to Wb) = \sigma(t - channel) \frac{\Gamma_{SM}(t \to Wb)}{\sigma_{SM}(t - channel)}$$

$$\Gamma_{t} = 2.00^{+0.47}_{-0.43} GeV \quad 0.81 < |V_{tb}| \le 1 \text{ at 95\% C.L.}$$

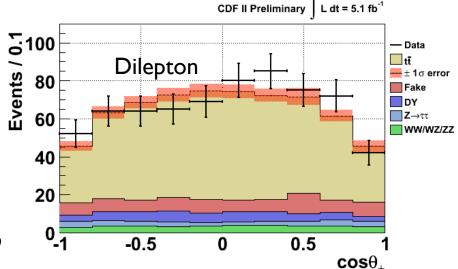
arXiv:1201.4156[hep-ex]

Top-Antitop Spin Correlations

- Top pairs are produced with a definite spin state depending on production mechanism
 - Quark-Antiquark Annihilation (~85%): Spin I
 - ▶ Gluon Fusion (~15%): Spin 0

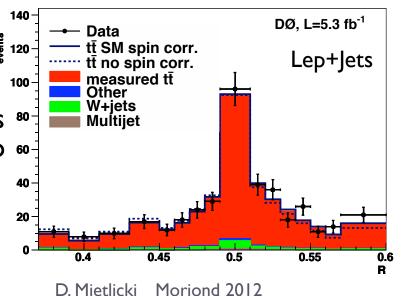
- ▶ Top decays before hadronization (only known quark to do so!)
 - Spin information passed to decay products the correlated spins can be measured from decay product angular distributions
- Correlation strength (frame dependent!) is defined as:

$$\kappa = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}} \qquad \qquad \kappa_{beam}^{SM} = 0.78^{+0.03}_{-0.04} \\ \text{Nucl. Phys. B 690, 81 (2004)}$$


Measuring the Spin Correlation

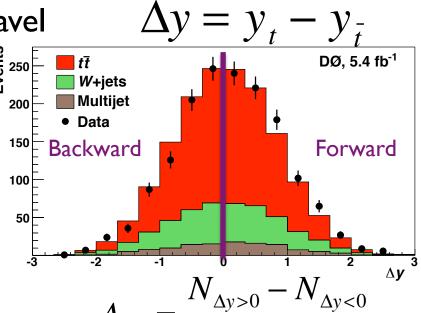
Results shown here assume spin quantized along beam axis

CDF:


Template fits based on decay product angular distributions

$$\kappa_{Lep+Jet}^{CDF} = 0.72 \pm 0.69$$
 CDF Conf. Note 10211 $\kappa_{Dilepton}^{CDF} = 0.042 \pm 0.563$ CDF Conf. Note 10719

- - - Significantly increased sensitivity
 - Likelihood fit based on probabilities ** that events are signal events and do ... (or do not) contain SM spin correlation


$$\kappa^{D0}_{Combo(Dil,Lep+Jet)} = 0.66 \pm 0.23$$

The Forward-Backward Asymmetry

Do tops have a preference to travel along the proton or antiproton direction?

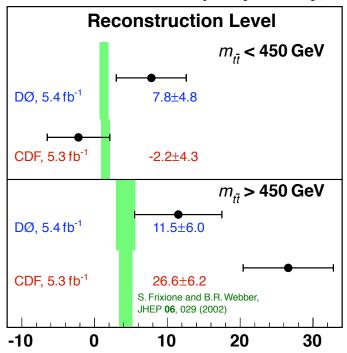
- ightharpoonup Measure asymmetry in Δy
- Leading order: standard model predicts no asymmetry
- Next-to-leading order: small positive asymmetry
 - NLO predictions shown today based on MC generator Powheg with electroweak corrections added

$$A_{FB} = \frac{N_{\Delta y > 0} - N_{\Delta y < 0}}{N_{\Delta y > 0} + N_{\Delta y < 0}}$$

$$\rightarrow A_{FB}^{NLO} = 6.6\%$$

Powheg: JHEP **0709**, 126 (2007)

EW Corrections: Phys. Rev. D **84**, 093003 (2011); JHEP **1201**, 063 (2012); arXiv: 1201.3926[hep-ph]

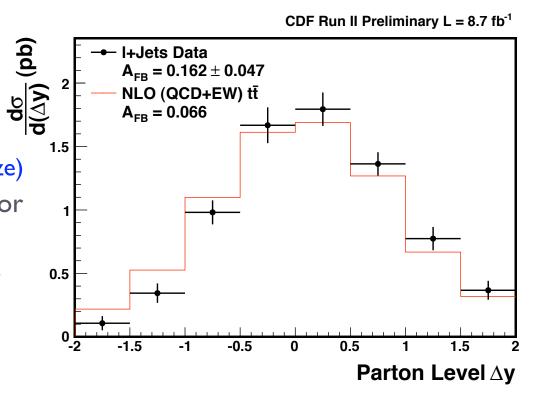

The Asymmetry in ~5 fb⁻¹

- Inclusive asymmetries exceed standard model predictions by $\sim 1.5-2 \, \sigma$
- Somewhat ambiguous mass and rapidity dependence
 - Only two bins in $M_{tt}/\Delta y$

Measurement	Parton Level A _{FB} (%)
CDF Lep+Jets ¹	15.8 ± 7.4
CDF Dilepton ²	42 ± 16
CDF Combined ³	20.1 ± 6.7
D0 Lep+Jets ⁴	19.6 ± 6.5

Background Subtracted A _{FB} (%)	∆y < 1.0	$ \Delta y \ge 1.0$
D0 Lep+Jet	6.1 ± 4.1	21.3 ± 9.7
CDF Lep+Jet	2.9 ± 4.0	29.1 ± 9.6

Forward-Backward Top Asymmetry, %

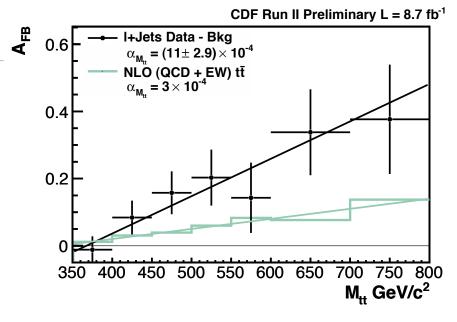


¹CDF L+J: PRD **83**, 112003 (2011); ²CDF Dil: CDF Conf. Note 10436;

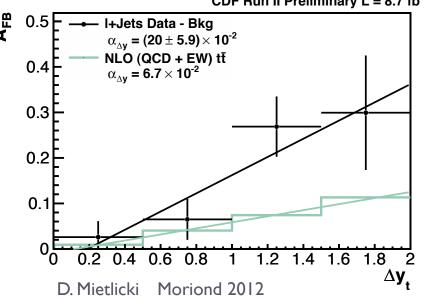
³CDF Combo: CDF Conf. Note 10584; ⁴D0 L+J: PRD **84**, 112055 (2011)

The Asymmetry at CDF in the Full Dataset

- Updates from CDF's 5.3 fb⁻¹ lepton+jets analysis:
 - Add new data stream and increase luminosity to 8.7 fb⁻¹
 - ▶ 2498 events (double sample size)
 - Use NLO generator Powheg for signal modeling
 - Parton level shape corrections use regularized unfolding algorithm
 - Proper multi-binned measurement of rapidity and mass dependence
- Parton Level A_{FB}: 16.2 ± 4.7 %
 (NLO: 6.6%)

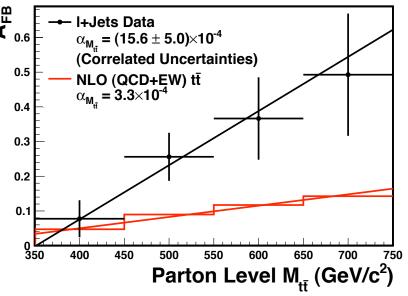


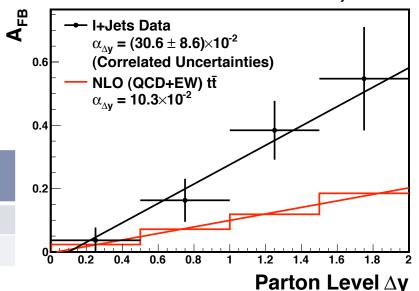
CDF Conf. Note 10807


Background-Subtracted M_{tt} and Δy Dependence

- Predicted background contribution has been removed
 - Measure asymmetry in only top events
- No correction to parton level yet
 - No assumptions about the underlying physics
- Data well-described by linear ansatz determine best-fit slope
 - χ^2 /d.o.f ≤ ~I for both Δy and M_{tt} dependence
- Determine p-value by comparing observed slope to NLO prediction
 - How often will NLO slope fluctuate to be at least as large as in the data?

Slope Parameter $lpha$	A _{FB} vs. M _{tt}	A _{FB} vs. Δy
Data	$(11.1 \pm 2.9) \times 10^{-4}$	$(20.0 \pm 5.9) \times 10^{-2}$
SM	3.0×10 ⁻⁴	6.7×10 ⁻²
p-value	0.00646	0.00892




Parton Level M_{tt} and Δy Dependence CDF Run II Preliminary L = 8.7 fb⁻¹

- Correct for acceptance and detector resolution
 - Regularized unfolding algorithm addresses resolution effects
 - Multiplicative acceptance correction factor applied to each bin
 - Both corrections use the NLO generator Powheg as the top model
- Parton level results can be compared directly to theory
- Determine best-fit slope for observed data and compare to NLO prediction

Slope Parameter $lpha$	A _{FB} vs. M _{tt}	A _{FB} vs. Δy
Data	$(15.6 \pm 5.0) \times 10^{-4}$	$(30.6 \pm 8.6) \times 10^{-2}$
SM	3.3×10 ⁻⁴	10.3×10 ⁻²

CDF Run II Preliminary L = 8.7 fb⁻¹

D. Mietlicki Moriond 2012

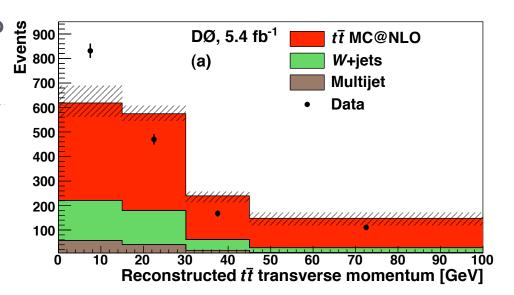
Conclusions

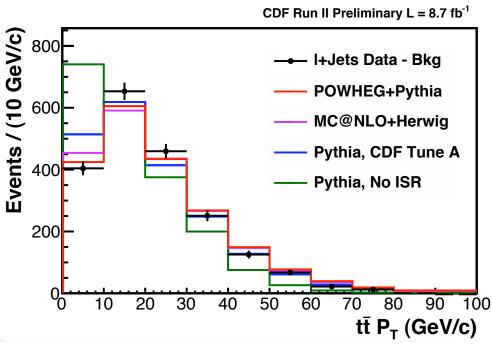
- The full Tevatron dataset is now being studied in top properties measurements
- Many areas of study (spin correlations, A_{FB}) are complementary to LHC measurements
- CDF and D0 combinations are available (W helicity) or in progress for many properties measurements
- Please see the websites of CDF's and D0's Top Groups and the Tevatron Electroweak Working Group for more information and results not presented today:

http://www-cdf.fnal.gov/physics/new/top/top.html
http://www-d0.fnal.gov/Run2Physics/top/top public web pages/
http://tevewwg.fnal.gov

Data-taking is done, but there's a lot left to be learned from the Tevatron's top quark sample!

Backup Slides


Comparison of Two-Bin Parton Level A_{FB} to Previous Results

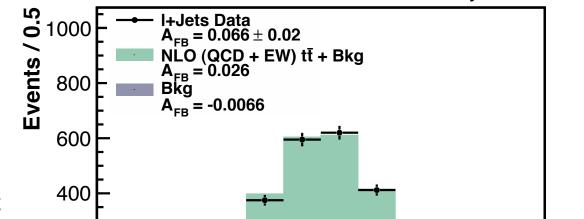

- ▶ Previous version of CDF analysis only provided parton-level results for two bins of M_{tt} and Δy
- Table compares the new result in the same two bins to the previous results (all numbers are percentages)

Selection	NLO (QCD+EW)	CDF, 5.3 fb ⁻¹	D0, 5.4 fb ⁻¹	CDF, 8.7 fb-1
Inclusive	6.6	15.8 ± 7.4	19.6 ± 6.5	16.2 ± 4.7
M_{tt} < 450 GeV/c ²	4.7	-11.6 ± 15.3	7.8 ± 4.8 (Bkg. Subtracted)	7.8 ± 5.4
$M_{tt} \ge 450 \text{ GeV/c}^2$	10.0	47.5 ± 11.2	II.5 ± 6.0 (Bkg. Subtracted)	29.6 ± 6.7
$ \Delta y < 1.0$	4.3	2.6 ± 11.8	6.1 ± 4.1 (Bkg. Subtracted)	8.8 ± 4.7
$ \Delta y \ge 1.0$	13.9	61.1 ± 25.6	21.3 ± 9.7 (Bkg. Subtracted)	43.3 ± 10.9

Source of the Asymmetry?

- Is it a problem with the current understanding of the SM?
 - Mis-modeled top pair P_T spectrum?
 - Higher order corrections?
- Is it new physics?
 - Many new models have been proposed
 - ▶ Axigluon, Z-prime, W-prime, ...
 - Other top properties measurements can help differentiate between the possibilities
 - Differential cross-section in M_{tt}
 - ▶ Top spin or polarization

Reconstruction Level A_{FB}


200

Event selection:

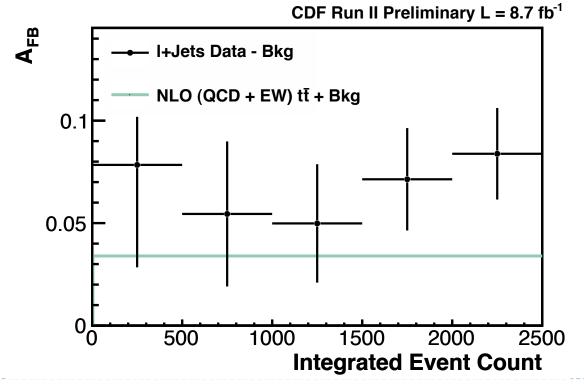
- ▶ One high P_T central lepton
- At least four jets
 - At least one b-tag
- ▶ Large missing E_T
- Total transverse energy H_T above 220 GeV

Background model:

- Diboson, single top, Z+jets from MC
- W+jets shape from MC
- QCD shape from data
- W+jets and QCD normalization from fit to missing E_T spectrum
- Events reconstructed via χ²-based kinematic fit to top-antitop hypothesis
- Event count:
 - 2498 total candidates
 - 505 predicted background

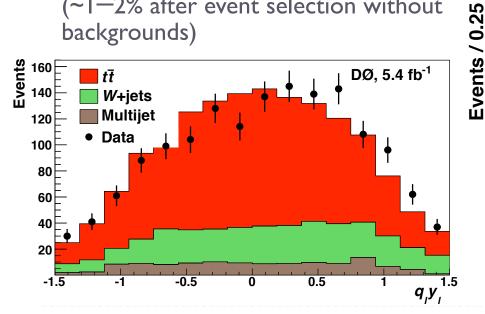
CDF Run II Preliminary L = 8.7 fb⁻¹

 $\Delta \mathbf{y}_{\mathsf{t}}$

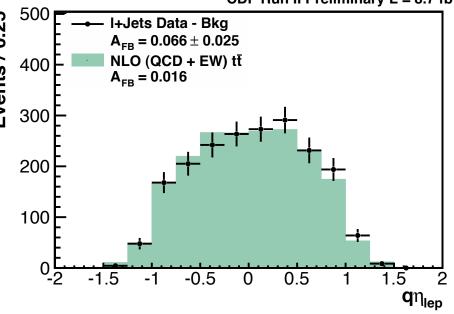

$$A_{FB}^{reco.} = 6.6 \pm 2.0\%$$

0

$$A_{FB}^{bkg.sub.} = 8.5 \pm 2.5\%$$


The Asymmetry Over the Data-Taking Period

- Look at the background-subtracted asymmetry as a function of the number of events in the sample
 - Verify it was not cause by some time-dependent detector effect
 - "0 events" = start of Run II
- ▶ A_{FB} remains constant (within uncertainties) over the entire sample


Leptonic Asymmetry

- Motion of lepton in semi-leptonic top decay correlated with parent top
 - A real top pair asymmetry will manifest itself here as well
- Measure asymmetry in $q^* \eta_{lep}$ [lepton] +jets] or $(\eta^+_{lep} - \eta^-_{lep})$ [dilepton]
 - Smaller expected asymmetry than in Δy (~I−2% after event selection without backgrounds)

Analysis	Background Subtracted Leptonic A _{FB} (%)
D0 Lep+Jet	14.2 ± 3.8
CDF Lep+Jet	6.6 ± 2.5
CDF Dilepton	21 ± 7

CDF Run II Preliminary L = 8.7 fb⁻¹

D. Mietlicki Moriond 2012

21