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Overview: ITER 
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ITER Magnet System (5 K / 6.5 K)  

Central Solenoid (CS) 
(Bmax~13 T) 

Toroidal Field (TF) Coils 
(Bmax~12 T, I = ~ 70 kA) 

Poloidal Field (PF) Coils 

Bmax~ 6 T 

Bmax~ 5 T 

Bmax~ 4 T 

Nb3Sn and NbTi 
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•  The ITER project sets new limits for conductor and coil dimensions: 

 Currents of up to 68 kA 

 Coils of up to 13 m (Nb3Sn) and 24 m (NbTi) in diameter 

•  More than 530 t of Nb3Sn strands are required for the TF and CS coils 

•  About 300 t of NbTi strands are required for the PF and CC coils 

•  HTS current leads are fabricated using Bi-2223 tapes up to 68 kA 

 

The ITER magnet system is a challenge for industry, 
worldwide … 
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Production of 14 MeV neutrons – deposition of energy in the “first wall” → 
 substantial materials problems (~1 MW/m²)! 

At the magnet location: Attenuation by a factor of ~ 106. Scattering processes 
 lead to a “thermalization” of the neutrons! 
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DAMAGE ENERGY SCALING  
 

  σ(E)  neutron cross section 
  T(E)  primary recoil energy distribution 
  F(E)  neutron flux density distribution 
  t  irradiation time in the neutron spectrum F(E) 
  
  < σ(E) . T(E) >   displacement energy cross section 

 
  ED = < σ(E) . T(E) > . F(E) . t  damage energy (total energy transferred to each 

    atom in the material) 
 

 SUCCESSFUL SCALING OF Tc AND Jc IN METALLIC SUPERCONDUCTORS 
   
 PREDICTIONS OF PROPERTY CHANGES IN AN UNAVAILABLE NEUTRON 
SPECTRUM ARE FEASIBLE! 
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SUPERCONDUCTORS 

Radiation will affect 

 TRANSITION TEMPERATURE Tc 

 - through disorder:   unlikely in alloys 

    effective in metals and ordered compounds 

  NORMAL STATE RESISTIVITY ρn 

 - through the introduction of additional scattering centers 

    very small in alloys 

    significant in metals and ordered compounds 

  UPPER CRITICAL FIELD Hc2 

 - through the same mechanism:      ρn ∝ 1/ l  ∝ κ ∝ Hc2 

  CRITICAL CURRENT DENSITY Jc 

 - through the production of pinning centers 
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DAMAGE PRODUCTION in LT SUPERCONDUCTORS 

FAST NEUTRONS (E > 0.1 MeV)  

 Displacement cascade initiated by the primary knock-on atom, if 
 its energy exceeds 1 keV 

EPITHERMAL NEUTRONS (1 – 100 keV) 

 Point defect clusters 

THERMAL NEUTRONS 

 Transmutations, point defects 

 

γ-rays:  No influence 

 

NB: Stable collision cascades in materials with low conductivity, e.g. HTS 
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RESULTS 

 
The “Workhorse”: NbTi 

 

A15 Superconductors:  

 

•  Nb3Sn 

•  Alloyed A15’s: (Nb,Ti/Ta)3Sn 

•  Advanced A15’s: Nb3Al 

 



LOW TEMPERATURE PHYSICS 



LOW TEMPERATURE PHYSICS 

Results on NbTi 
  
 
 
SMALL EFFECTS on Jc  -  depending on the initial  

 micro-structure for flux pinning 
 
SMALL DECREASE of Hc2 - caused by a 
  

 SMALL DECREASE of Tc 
 
 
•  Results typical for materials with a high degree of disorder 
 
•  Initial optimized defect structure for flux pinning is “disturbed” 
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A15 SUPERCONDUCTORS 

!! Scale not accurate: maximum fluence around 7-10 x 1023 m-2 !! 
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I C / 
I C0

 

 EM Nb3Sn at µ0H = 12 T
 RHQT Nb3Al at µ0H = 16 T

 

 

fast neutron fluence (m-2)
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RRP (OST): (NbTa)3Sn – PIT (Bruker EAS): (NbTa)3Sn 
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SUMMARY: Nb3Sn 
  
SIGNIFICANT (and later on drastic) EFFECTS on Tc  -  caused by disorder 
  
SIGNIFICANT ENHANCEMENTS OF Jc (followed by a precipitous drop) 
  
  - increase caused by an increase of Hc2 - mean-free-path effect 

 - drop caused by the Tc degradation   
 
Typical for materials with a high degree of order 
 
 
SUMMARY: alloyed Nb3Sn (Addition of small amounts of Ti or Ta) 
  
Mean-free-path effect increases Hc2 ⇒ ENHANCEMENT OF Jc  
 
But additional scattering centres due to neutron irradiation lead to an earlier 
decrease of Jc (at lower fluence) 
 
Similar results on  Nb3Al 
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STABILIZER 

Normal state resistivity essential for stabilization and 
quench protection 

 

In-field resistivity experiments on copper 

 

Irradiation must be done at low temperature (~ 5 K) due to 
substantial annealing 

  

 (most low temperature irradiation facilities have been 
shut down, only one 14 MeV source available in Japan) 
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•  Resistivity measurement at 10 K 

•  Neutron irradiation at the IPNS spallation source at 5 K 

•  Warm-up cycle to RT 

•  Resistivity measurement at 10 K 

Multifilamentary 

NbTi-conductors 

 

#34: RRR ~ 60 

#35: RRR ~ 120 

#36: RRR ~ 120 
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INSULATION 

Most critical component of the magnet in a radiation 
environment 

 

Has to provide electrical insulation  (ü) 

 

Has to provide mechanical strength and to withstand 
thermal contraction / expansion and Lorentz forces 

 

Must be suitable for a vacuum-pressure impregnation 
process – “pot life” 
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14 m 

Conductor (35 tons)	


Coil Case (200 tons)	


Winding	

(7 double pancakes)	


Radial Plate (RP)	

(60 tons)	


9 m 

Structures	


Insulation (glass and resin) ∼ 5 tons	


TF Coil	

(300 tons)	


  

7 RP	


TF Coil Design 
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Typical magnet insulation build-up 

28 

(0°) 

(90°) 

Fiber reinforced plastics (FRP’s) 
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jacket 

 

 

 

 

 

 

 

 

 

 

 

Kapton/glass fiber reinforced tape wrapped half-overlapped                                              

0° 

90° 

 ITER                                                                  TF Coil Insulation 

Kapton 
 
Glass fiber 
tape 
 
Seam (blend) 

strongly 
orthotropic 
material 
properties 
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All tests @ 77 K 

Static and dynamic tensile tests                
(90 ° direction) 

Short-beam-shear (SBS) test with span to 
thickness ratio of 4:1 and 5:1      
(0 ° and 90 ° direction) 

Neutron irradiation in the TRIGA reactor 
(Vienna) to a fast neutron fluence of 1, 2 
and 4x1022 m-2 (E > 0.1 MeV)  

Total absorbed dose of ~50, 100 and 200 
MGy 

Test specimen 

23 6.4 – 6.5 

SBS 

Tensile 

Test procedures 
~7
0

10

3
R=60

4
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Material performance drastically 
affected by irradiation 

 

Mechanical properties are close to 
the limits of the ITER specifications 

 

Improvement of the matrix stability!! 

EUHT DGEBA Epoxy (Alstom) 

ITER design fluence 

ITER 
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AroCy L-10 PY 306 

Safety precautions Avoid local overheating (hot spots) 
Store in sealed containers in dry 
rooms 
Provide sufficient air exchange 
Take necessary actions to avoid static 
electricity 

Provide sufficient air exchange 
Take necessary actions to avoid 
static electricity 
Avoid strong acids and bases 
 

Viscosity 
 

η25 °C = 120 mPa s 
η60 °C = 17 mPa s 
 

η25 °C = 1200-1600 mPa s 

 
Pot life at high quantities 
 

Dependent upon type and 
concentration of  co-catalyst and 
catalyst used 
 

Can be handled 

O O C N 
C N 

O O 
O O 

CE / epoxy blend 



LOW TEMPERATURE PHYSICS 

T1 (100) (90°)

T2 (40) (90°)

T8 (30) (90°)
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DGEBF 

DGEBA 
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SUMMARY and CONCLUSIONS 

•  LT Superconductors: No problems regarding 
radiation effects expected for ITER 

 
•  Stabilizer: Degradation must be kept in mind 
 
•  Insulators: Excellent solution found – industrial 

tests completed; qualification of materials from 
different suppliers under way 
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FAST NEUTRONS 
   
COLLISION CASCADES, 
IF THE ENERGY OF THE 

PRIMARY KNOCK-ON 
ATOM EXCEEDS  
 ∼ 1 keV 

 
 

STATISTICALLY DISTRIBUTED 
 

~ SPHERICAL, ~ 2.5 nm Ø 
 

SURROUNDED BY A STRAIN FIELD 
OF THE SAME SIZE 

 
5 x 1022 defects m-3 per 1022 neutrons m-2 
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YBCO 

ξ ab ˜ 4nm 

at 77 K 

 

YBCO 

ξab ˜  

1.5 nm 

at 5 K 

 

Metallic Superconductors 

          ξ ˜ 10 nm 

 

Collision Cascade (schematic) 


