
Vakho Tsulaia
LBNL

Workshop on Concurrency in the Many-Core Era
FNAL, November 21-22, 2011

Process Based Parallelism

in ATLAS Software

V. Tsulaia Nov-21, 20112

Contents

• Process based parallelism

• AthenaMP
– Architecture
– Pros and Cons of the multi-process approach

• Considerations for future development
– Flexible process steering
– Specialized I/O worker processes
– Inter-process communication

V. Tsulaia Nov-21, 20113

Process based parallelism

• In its simplest incarnation: Spawn N instances of the
application – Athena MJ (Multiple Jobs)

• No code rewriting required
• We have been using this mode of operation over years on

the production system

end

core
-0 JOB 0:

Events: [0,1....]

core
-1 JOB 1:

Events: [0,1....]

core
-2 JOB 2:

Events: [0,1....]

core
-3 JOB 3:

Events: [0,1....]

PARALLEL: independent jobs

start

endstart

endstart

endstart

init

init

init

init

finfinfin

fin

finfinfin

fin

finfin

IF

IF

IF

IF

OF

OF

OF

OF

V. Tsulaia Nov-21, 20114

Athena MJ

• Can scale surprisingly well (despite hitting hardware
memory limits)

• The dedicated test run in 32 bit
➢ Event throughput vs Number of

individual processes

➢ Standard ATLAS reconstruction

➢ 8 Core machine, Hyper-threading,
total memory 24GB

➢ Intel(R) Xeon(R) CPU E5530 @
2.40GHz

➢ Improvement up to N=16

➢ Degradation starts at N=25

Plot by Rolf Seuster

V. Tsulaia Nov-21, 20115

Resource crisis

• Memory is a scarce resource for ATLAS reconstruction jobs
– Example: we can not produce the analog of the plot on previous page for

64 bit simply because that many jobs cannot run in parallel

– An attempt to run 8 individual reconstruction jobs in parallel in 64 bit
resulted to heavy swapping at very early stage of the jobs. The machine
stopped responding and had to be rebooted.

• Situation with I/O is not better either
– The scenario when N jobs access events in N files does not scale.

• We need a parallel solution which allows for resource
sharing

V. Tsulaia Nov-21, 20116

Athena MP

finOS-fork merge

core-
0

WORKER 0:
Events: [0, 5, 8,…]

core-
1

WORKER 1:
Events: [1, 7, 10,…]

core-
2

WORKER 2:
Events: [3, 6, 9,…]

core-
3

WORKER 3:
Events: [2, 4, 12,…]

interme
diate
OF

interme
diate
OF

interme
diate
OF

interme
diate
OF

init

PARALLEL: workers evt loop + finSERIAL:
parent-init-fork

SERIAL:
 parent-merge and finalize

init

initfin

initfin

initfin

initfin

IF

OF

V. Tsulaia Nov-21, 20117

Process management

• Athena MP uses python multiprocessing module

• MP semantics hidden inside Athena in order to avoid client
changes
– Special MP Event Loop Manager

• When it is time to fork() create Pool of worker processes
– Initializer function

• Change work directory
• Reopen file descriptors

– Worker function
• Call executeRun of the wrapped Event Loop Manager

• Easy to use, however the simplicity comes at the cost of
reduced functionality
– More details later in this presentation

V. Tsulaia Nov-21, 20118

Isolated processes

• AthenaMP worker processes don't communicate to each
other

• Changes were required only to few core packages
– To implement MP functionality and handle I/O

• No changes are necessary in the user code

• In future versions of the AthenaMP workers will have to
communicate
– But again: the IPC should be either completely isolated from the user code,

or exposed to a minimal set of packages

V. Tsulaia Nov-21, 20119

Memory sharing

• Memory sharing between processes comes 'for free' thanks
to Copy On Write

• Pros
– If memory can be shared between processes, it will be shared
– No need to do anything on our side to achieve that – let the OS do the

work

– No need to worry about memory access synchronization

• Optimal strategy: fork() as late as possible in order to
reduce overall memory footprint

V. Tsulaia Nov-21, 201110

Effect of late forking

Delayed fork()
1.4GB shared

Delayed fork()
1.4GB shared

➢ Standalone test running standard
Athena reconstruction with different
number of processes

➢ Platform:
➢ Intel Xeon L5520 @ 2.27GHz
➢ 8 Cores
➢ Memory 24GB
➢ Hyper-threading

Maximal memory consumption during event loop

V. Tsulaia Nov-21, 201111

COW, handle with care

V. Tsulaia Nov-21, 201112

Unshared memory (1)

• Once memory gets unshared during event loop it cannot be
re-shared again

• Example
– Conditions change during event loop and all workers need to read new

constants from the database

– Even though they all get the same set of constants, each worker will have
its private copy

– The amount of unshared memory can become substantial

• Possible solution/workaround: develop shared storage for
conditions data
– No plans so far, just an idea

V. Tsulaia Nov-21, 201113

Unshared memory (2)

• Spikes at finalize() caused by massive memory un-
sharing

• Harmless if remain within hardware memory limits
• … otherwise leading to severe CPU performance penalties

Total memory of one 8 process Athena MP 32 bit reconstruction job vs Wall Time

Same job run 3 times on
the same machine

Spike sizes non
reproducible (race
conditions)

V. Tsulaia Nov-21, 201114

Output file merging

• Output file merging is a tedious process, which has large
negative impact on the overall performance of the Athena
MP
– Most of the time is spent in merging POOL files despite of switching to the

fast (hybrid) merging utility

Merging time/Total job (transform) wall time

➢ ATLAS reconstruction RAWtoESD

➢ 1.5K events

V. Tsulaia Nov-21, 201115

Need for parallel I/O

• Even with the fast merger Athena MP spends a substantial
fraction of time merging POOL files

• We also need to avoid reading events from single file by N
individual processes

• Solution: develop specialized I/O worker processes
– Event source: Read data centrally from disk, deflate once, do not duplicate

buffers

– Even sink: Merge events on the fly, no merge post processing

More details in the presentation by
Peter VanGemmeren later this afternoon

V. Tsulaia Nov-21, 201116

More on merging

• Not only POOL files need to be merged

• Since recently we also started to include monitoring in our
tests and this brought the issue of histogram merging into
the list of AthenaMP issues

• We seem to have solved problems in histograms produced
by individual workers
– The right merger is yet to be implemented into AthenaMP infrastructure

• However the question remains open what to do with certain
types of objects, for example TGraph-s
– No strategy for the moment

V. Tsulaia Nov-21, 201117

Need for flexible process steering

• This is critical already now due to python multiprocessing
shortcomings
– When a child process segfaults and hence does not run the Python-side

cleanup the parent will hang forever.
– Finally the parent process and all remaining zombie children have to be

killed by hand

– Makes it unsuitable for production

• Proposal: replace python multiprocessing
– Move to C++ as the main implementation

– Keep thin Python layer to allow steering from Python

Development started by Wim Lavrijsen

V. Tsulaia Nov-21, 201118

New steering (1)

• Requirements
– “Clean” behavior on disruptive failures

• All associated processes die (if need be)
• No resources left behind
• Descriptive exit codes

– Interactive/debugging runs
• Including the ability to attach a debugger to the faulty process

– Finer grained driving of processes

• Also need to address the issue of memory spikes at
finalize()

– Perhaps by scheduling finalization of worker processes

V. Tsulaia Nov-21, 201119

New steering (2)

• Work on standalone prototype is ongoing
– Process organization: use groups

• Mother and children in separate groups. Can have multiple groups of children
• Allows waitpid(-pgid) to retrieve all exit codes
• Allows to suspend workers and attach debugger
• Allows killing all workers from shell

– Steering of workers through boost message queues
– Automatic attachment of debugger to faulty process

– Retrieval performance monitoring types

– Improved handling of file descriptors on type

• Move into AthenaMP will be somewhat disruptive
– AthenaMP too tightly coupled to implementation details

V. Tsulaia Nov-21, 201120

Passing objects between processes (1)

• Do we have a use-case?
– None for the moment

– But we'll certainly need to do that when we have I/O workers

• Possible candidates to be passed between workers are
Incidents
– We have implemented some prototype examples for passing file incidents

between workers and for broadcasting file incidents from the I/O worker to
all event workers

– The examples are based on boost interprocess, objects are communicated
via shared memory segments

– Since file incidents contain strings we had to play around with interprocess
stings, vectors

More on passing C++ objects between processes
in the presentation by Roberto Vitillo later this afternoon

V. Tsulaia Nov-21, 201121

Passing objects between processes (2)

• How to handle such communication between processes?
– Should such objects be handled synchronously?

• Direct intervention in the event processing. Control flow problem

– Or asynchronously by placing objects into shared memory segments and
having consumer processes to check for their existence?

• When do the client processes perform such checks?
• How to make sure the objects are delivered to clients in time and no object gets

missed?

• We don't have a clear strategy for the moment
– And the absence of real use-cases does not make the situation any easier
– We may end up defining individual strategies on case by case basis

V. Tsulaia Nov-21, 201122

Summary

• Despite the relative simplicity of the idea of process based
parallelism the actual implementation/validation has taken
few years and is far from being over
– On the other hand we are now ready to embark on a large scale validation

campaign with current version of AthenaMP and hand the results over to
physics groups for analysis

• A memory optimal solution is vital for switching Athena to
64 bit

• Move to new, C++ based, multiprocessing is probably the
most critical task for the moment

• Introduction of specialized I/O workers will bring a
fundamentally new level of complexity into AthenaMP

– … and for sure will keep us busy for long time

V. Tsulaia Nov-21, 201123

BACKUP

V. Tsulaia Nov-21, 201124

Efficiency: job size

• In order to compete in CPU efficiency with N single process
Athena jobs (assuming that we have enough memory for
those), we need to increase Athena MP job size
– Run one Athena MP job over N input files instead of running N

Athena MP jobs over single input file each

	Title page
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

