Process Based Parallelism
in ATLAS Software

Vakho Tsulaia
LBNL

Workshop on Concurrency in the Many-Core Era
FNAL, November 21-22, 2011

N

reereeerr

A
m‘

Contents

* Process based parallelism

« AthenaMP

— Architecture
— Pros and Cons of the multi-process approach

« Considerations for future development
— Flexible process steering
— Specialized I/O worker processes
— Inter-process communication

/\

/\l /\
rereredr

V. Tsulaia Nov-21, 2011

Process based parallelism

* In its simplest incarnation: Spawn N instances of the
application — Athena MJ (Multiple Jobs)

 No code rewriting required

 We have been using this mode of operation over years on
the production system

I Cstart = init > 100% ., — fin end
F < Cstart — init —=> 1981 —fin end

IF = | start — init —> Eentes 051 —Ualin
IF = Ustart — init —=> B3 |~ fin —>{ end | = OF

rereeeer ﬂ

V. Tsulaia Nov-21, 2011

Athena MJ

« Can scale surprisingly well (despite hitting hardware
memory limits)

* The dedicated test run in 32 bit

throughput for multi athena jobs > Event throughput vs Number of

individual processes

o 1.4
o L » Standard ATLAS reconstruction
£ 1.2 » 8 Core machine, Hyper-threading,
g B total memory 24GB
1— > Intel(R) Xeon(R) CPU E5530 @
B 2.40GHz
0.8
- » Improvement up to N=16
0.5:_ » Degradation starts at N=25
04—
- 2:_ Plot by Rolf Seuster
: L1 1 | | L1 1 | | L1 1 | | L1 1 | | L1 1 | | L1 1 | | [)\l /\
0 5 10 15 20 25 30 . rfeeeees ‘III

proc

V. Tsulaia Nov-21, 2011

Resource crisis

Memory is a scarce resource for ATLAS reconstruction jobs

— Example: we can not produce the analog of the plot on previous page for
64 bit simply because that many jobs cannot run in parallel

— An attempt to run 8 individual reconstruction jobs in parallel in 64 bit
resulted to heavy swapping at very early stage of the jobs. The machine
stopped responding and had to be rebooted.

Situation with 1/O is not better either
— The scenario when N jobs access events in N files does not scale.

We need a parallel solution which allows for resource
sharing

/\

rfreeee ‘m

V. Tsulaia Nov-21, 2011

Athena MP

WORKER 0: : loterme
> Events: [0, 5, 8,...] }M;ﬂe
> |WORKER 1: , ML
Events: [1, 7, 10,...] fin OF
fin
interme
> WORKER 2: diate
Events: [3, 6, 9,...] fin OF
interme
diate

OF

> ﬁNORKER 3: }
Events: [2, 4, 12,...]

PARALLEL.: workers evt loop + fin

SERIAL:
parent-merge and finalize

/\
rfreeee ‘m

SERIAL:
parent-init-fork

6 V. Tsulaia Nov-21, 2011

Process management

Athena MP uses python multiprocessing module

MP semantics hidden inside Athena in order to avoid client
changes

— Special MP Event Loop Manager

When it is time to fork () create Pool of worker processes

— Initializer function
« Change work directory
* Reopen file descriptors

— Worker function
« Call executeRun of the wrapped Event Loop Manager

Easy to use, however the simplicity comes at the cost of
reduced functionality

— More details later in this presentation

/\

rfreeee ‘m

V. Tsulaia Nov-21, 2011

Isolated processes

AthenaMP worker processes don't communicate to each
other

Changes were required only to few core packages
— To implement MP functionality and handle I/O

No changes are necessary in the user code

In future versions of the AthenaMP workers will have to
commuhnicate

— But again: the IPC should be either completely isolated from the user code,
or exposed to a minimal set of packages

/\

FrEreeeer ‘m

V. Tsulaia Nov-21, 2011

Memory sharing

Memory sharing between processes comes ‘for free' thanks
to Copy On Write

Pros
— If memory can be shared between processes, it will be shared

— No need to do anything on our side to achieve that — let the OS do the
work

— No need to worry about memory access synchronization

Optimal strategy: fork () as late as possible in order to
reduce overall memory footprint

/\

rfreeee ‘m

V. Tsulaia Nov-21, 2011

Effect of late forking

Maximal memory consumption during event loop

10

Memory (GB)

25

20 -

15

10

o— Athena Sequential
—— Athena MP fork() after 1st event
—— Athena MP fork() after initialize()

L 1 1
8 10 12
NMumber of processes

Il
14

|
16 18

V. Tsulaia Nov-21, 2011

Delayed fork()
1.4GB shared

Standalone test running standard
Athena reconstruction with different
number of processes

Platform:

> Intel Xeon L5520 @ 2.27GHz

> 8 Cores

» Memory 24GB >

» Hyper-threading r:rr\rr| ‘uﬁ

COW, handle with care

~

rereeeer ﬂ

V. Tsulaia Nov-21, 2011

12

Unshared memory (1)

Once memory gets unshared during event loop it cannot be
re-shared again

Example

— Conditions change during event loop and all workers need to read new
constants from the database

— Even though they all get the same set of constants, each worker will have
its private copy

— The amount of unshared memory can become substantial

Possible solution/workaround: develop shared storage for
conditions data

— No plans so far, just an idea

/\

FrEreeeer ‘m

Unshared memory (2)

« Spikes at finalize() caused by massive memory un-
sharing

 Harmless if remain within hardware memory limits
- ... otherwise leading to severe CPU performance penalties

Total memory of one 8 process Athena MP 32 bit reconstruction job vs Wall Time

FY

14888 [&

F
12888 [

. 4 Same job run 3 times on
10000 [oea the same machine
$ s .
3 oooe | X0 % Spike sizes non
F x it reproducible (race
— IR conditions)

4888

FHk ¥
ety W
iy >
"

2088

/\
A A
5 fﬁ CCreeee ‘m
B 1 1 1 1
0 500 1800 1508 2800 2508 3000

13 Sec

14

Output file merging

Output file merging is a tedious process, which has large
negative impact on the overall performance of the Athena
MP

— Most of the time is spent in merging POOL files despite of switching to the
fast (hybrid) merging utility

Merging time/Total job (transform) wall time

45 T

o— Slow
—<— Hybrid

a0}

W
wu
T

w
o

N
w
T

[
(=)

» ATLAS reconstruction RAWtoESD
» 1.5K events

freeer

r n

1 1 I 1 1 I I
2 4 6 8 10 12 14 16 18 ‘
NProcs
BERKELEY LAB

V. Tsulaia Nov-21, 2011

Merging wall-time/Total Trf wall-time (%)
=
w
T

[
o
T

w
T

o

Need for parallel I/O

* Even with the fast merger Athena MP spends a substantial
fraction of time merging POOL files

 We also need to avoid reading events from single file by N
individual processes

« Solution: develop specialized I/O worker processes

— Event source: Read data centrally from disk, deflate once, do not duplicate
buffers

— Even sink: Merge events on the fly, no merge post processing

More details in the presentation by
Peter VanGemmeren later this afternoon

/\

rfreeee ‘m

15 V. Tsulaia Nov-21, 2011

16

More on merging

Not only POOL files need to be merged

Since recently we also started to include monitoring in our
tests and this brought the issue of histogram merging into
the list of AthenaMP issues

We seem to have solved problems in histograms produced
by individual workers
— The right merger is yet to be implemented into AthenaMP infrastructure

However the question remains open what to do with certain
types of objects, for example TGraph-s
— No strategy for the moment

/\

reerereere

|||‘
BERKELEY L AB
V. Tsulaia Nov-21, 2011

Need for flexible process steering

« This is critical already now due to python multiprocessing
shortcomings

— When a child process segfaults and hence does not run the Python-side
cleanup the parent will hang forever.

— Finally the parent process and all remaining zombie children have to be
killed by hand

— Makes it unsuitable for production

* Proposal: replace python multiprocessing
— Move to C++ as the main implementation
— Keep thin Python layer to allow steering from Python

Development started by Wim Lavrijsen

/\

rfreeee ‘m

17 V. Tsulaia Nov-21, 2011

18

New steering (1)

 Requirements

— “Clean” behavior on disruptive failures
« All associated processes die (if need be)
* No resources left behind
» Descriptive exit codes

— Interactive/debugging runs
 Including the ability to attach a debugger to the faulty process

— Finer grained driving of processes

* Also need to address the issue of memory spikes at
finalize()

— Perhaps by scheduling finalization of worker processes

V. Tsulaia Nov-21, 2011

/\

rfreeee ‘m

19

New steering (2)

Work on standalone prototype is ongoing

— Process organization: use groups
« Mother and children in separate groups. Can have multiple groups of children
 Allows waitpid(-pgid) to retrieve all exit codes
 Allows to suspend workers and attach debugger
 Allows killing all workers from shell

— Steering of workers through boost message queues
— Automatic attachment of debugger to faulty process
— Retrieval performance monitoring types

— Improved handling of file descriptors on type

Move into AthenaMP will be somewhat disruptive
— AthenaMP too tightly coupled to implementation details

/\

rfreeee ‘m

V. Tsulaia Nov-21, 2011

Passing objects between processes (1)

Do we have a use-case?
— None for the moment
— But we'll certainly need to do that when we have 1/0O workers

 Possible candidates to be passed between workers are
Incidents

— We have implemented some prototype examples for passing file incidents
between workers and for broadcasting file incidents from the I/O worker to
all event workers

— The examples are based on boost interprocess, objects are communicated
via shared memory segments

— Since file incidents contain strings we had to play around with interprocess
stings, vectors

More on passing C++ objects between processes
in the presentation by Roberto Vitillo later this afternoon

/\

rfreeee ‘m

20 V. Tsulaia Nov-21, 2011

21

Passing objects between processes (2)

 How to handle such communication between processes?
— Should such objects be handled synchronously?
 Direct intervention in the event processing. Control flow problem

— Or asynchronously by placing objects into shared memory segments and
having consumer processes to check for their existence?

* When do the client processes perform such checks?

« How to make sure the objects are delivered to clients in time and no object gets
missed?

« We don't have a clear strategy for the moment
— And the absence of real use-cases does not make the situation any easier
— We may end up defining individual strategies on case by case basis

/\

rfreeee ‘m

V. Tsulaia Nov-21, 2011

22

Summary

Despite the relative simplicity of the idea of process based
parallelism the actual implementation/validation has taken
few years and is far from being over

— On the other hand we are now ready to embark on a large scale validation
campaign with current version of AthenaMP and hand the results over to
physics groups for analysis

A memory optimal solution is vital for switching Athena to
64 bit

Move to new, C++ based, multiprocessing is probably the
most critical task for the moment

Introduction of specialized I/O workers will bring a
fundamentally new level of complexity into AthenaMP

— ... and for sure will keep us busy for long time

/\

rfreeee ‘m

V. Tsulaia Nov-21, 2011

BACKUP

/\

rfreeee ‘m

V. Tsulaia Nov-21, 2011

24

Efficiency: job size

In order to compete in CPU efficiency with N single process
Athena jobs (assuming that we have enough memory for
those), we need to increase Athena MP job size

— Run one Athena MP job over N input files instead of running N
Athena MP jobs over single input file each

“HI ——
HP=-SlowHerge —#—
HP=-FastHerge —&—

evt/zec/node

ear */’J’J)JJJ”;)’);I;,JE—”"_FFJ_FJd_F’JHXFHf_dF_JF—’_FH¥
/\
, A
2 4 6 8 10 12 14 16 18 rerereeer
HProcs

V. Tsulaia Nov-21, 2011

	Title page
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

