

Status of the NOvA Experiment

Sarah Budd Argonne National Lab On behalf of the NOvA Collaboration

Fermilab Users' Meeting 2010 June 2, 2010

NOvA Collaboration

- Argonne National Laboratory
- University of Athens
- California Institute of Technology
- University of California, Los Angeles
- Fermi National Accelerator Laboratory
- Harvard University
- Indiana University
- Lebedev Physical Institute
- Michigan State University
- University of Minnesota, Duluth
- University of Minnesota, Minneapolis
- The Institute for Nuclear Research, Moscow
- Technische Universität München, Munich
- State University of NewYork, Stony Brook
- Northern Illinois University, DeKalb
- Northwestern University
- Pontifícia Universidade Católica do Rio de Janeiro
- University of South Carolina, Columbia
- Southern Methodist University
- Stanford University
- University of Tennessee, Knoxville
- Texas A&M University
- University of Texas, Austin
- University of Texas, Dallas
- Tufts University
- University of, Virginia, Charlottesville
- The College of William and Mary
- Wichita State University

Outline

- Overview of neutrino oscillations
- Introduction to the NOvA experiment
- Physics opportunities using NOvA
- Project timeline
- Status of prototype detector construction, near detector construction, far detector site preparation and preparations for far detector construction

Neutrino Oscillation

- Neutrino oscillations occur because the flavor eigenstates are not identical to the mass eigenstates
- Neutrinos are nearly always produced/detected in flavor eigenstates, but propagate in mass eigenstates
- Oscillations are described by the PNMS mixing matrix
 - Specified by three angles and phase
 - Generally parameterized as follows

$$|v_{1}\rangle = U|v_{n}\rangle, \text{ where } (c_{ij} = \cos\theta_{ij}, s_{ij} = \sin\theta_{ij})$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Super-K, MINOS

MINOS, K2K, Chooz

Neutrino Oscillation Two neutrino model

When a 2 x 2 oscillation is sufficient (in vacuum)

$$P(v_e \rightarrow v_x) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 L}{E} \right)$$

Matter effects: In matter v_e 's interact differently than v_x 's Replace Θ , Δm with Θ_m , Δm_m

$$\sin^2 2\theta_m = \frac{\sin^2 2\theta}{(\cos 2\theta - \sqrt{2}G_F \rho_e E / \Delta m^2)^2 + \sin^2 2\theta}$$

• $P(v_{\mu} \rightarrow v_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$ $P_{1} = \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}(1.27 \ \Delta m_{13}^{2} \ L/E)$ $P_{2} = \cos^{2}(\theta_{23}) \sin^{2}(2\theta_{12}) \sin^{2}(1.27 \ \Delta m_{12}^{2} \ L/E)$ $P_{3} = J \sin(\delta) \sin(1.27 \ \Delta m_{13}^{2} \ L/E)$ $P_{4} = J \cos(\delta) \cos(1.27 \ \Delta m_{13}^{2} \ L/E)$

 $J = \cos(\theta_{13}) \sin(2\theta_{12}) \sin(2\theta_{13}) \sin(2\theta_{23}) \times \sin(1.27 \Delta m_{13}^2 L/E) \sin(1.27 \Delta m_{12}^2 L/E)$

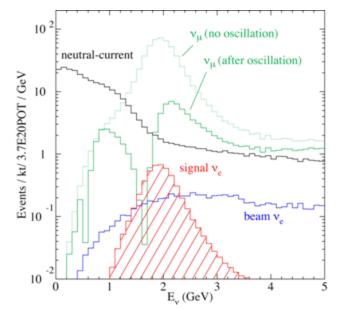

- In matter at oscillation maximum, P₁ multiplied by ~(1 ± 2E/E_R) and P₃ & P₄ will be multiplied by ~(1 ± E/E_R)
- top sign is for neutrinos with normal mass hierarchy and antineutrinos with inverted mass hierarchy, bottom sign for antineutrinos with normal mass hierarchy, and neutrinos with inverted mass hierarchy
- $E_R = \Delta m_{13}^2 / [2\sqrt{2}G_F \rho_E] \approx 11 \text{ GeV}$ for earth's crust
- ~±30% effect for NuMI (810 km baseline), ±11% effect for T2K (295 km baseline)

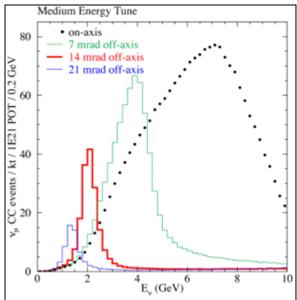
Full Oscillation Probability

Fractional Flavor Content varying $\cos \delta$

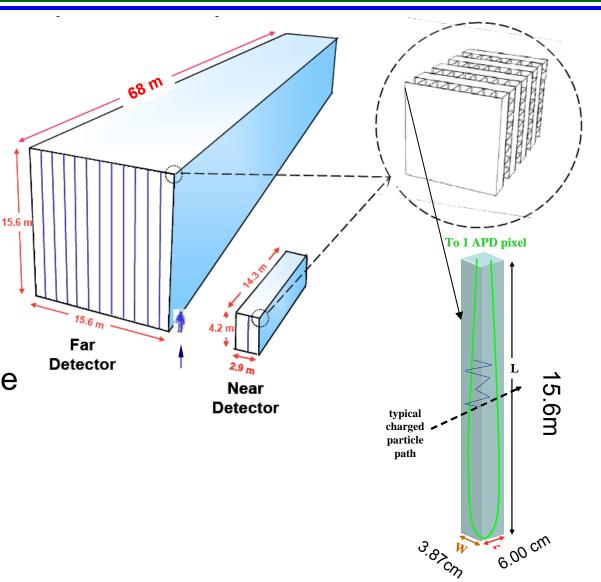
The NOvA Experiment

- NuMI Off-Axis v_e Appearance Experiment
- 14kt Far Detector, 14mr off-axis, in Ash River MN
 - L=810 km E~=2GeV
- 220t Near Detector, at Fermilab
- Upgraded NuMI beamline for medium energy running
- Run for 6 years
 - 3 years each of neutrino and antineutrino dominated beam
- Goals
 - Measurement of θ_{13}
 - Determination of mass hierarchy via matter effects
 - Begin to localize δ_{CP}
 - Precise Measurement of $sin^2(2\theta_{23})$



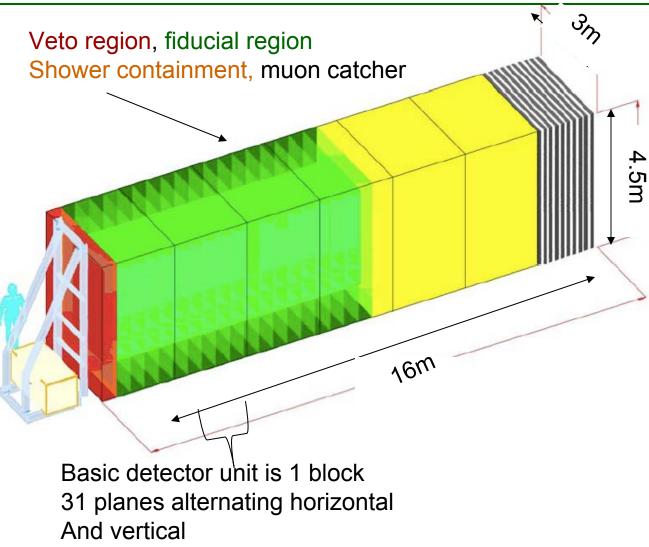

Why is NOvA off-axis?

- Off-axis yields a narrow band beam
- Better background rejection, higher signal/background
 - Backgrounds: v_e 's from K decay and higher-energy NC events


Raw signal and background rates for the NOvA FD site. The red bump is a signal at the CHOOZ limit. Energy resolution helps to reduce the beam nue backgrounds.

The neutrino spectra (flux times total cross-section) produced at the MINOS far detector site for the 9 different NuMI tunes

The NOvA Far Detector

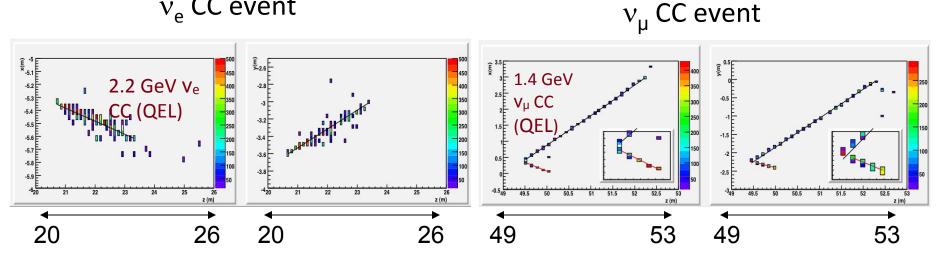

- FD: 14 kt, 73% Active Volume, 1003 planes
- PVC cell for primary containment
- Filled with liquid scintillator
- Each cell contains a wavelength shifting fiber
- Read out by avalanche Photodiode
- Planes Alternate vertical & horizontal orientation

The Near Detector

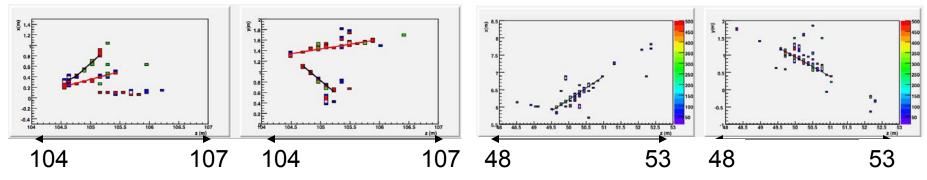
6 blocks of 31 planes plus a muon catcher.
All parts are fully active liquid scintillator cells identical to the far detector.
Downstream of the active region is a 1.7 meter long muon catcher region of steel

interspersed with 10 active planes of liquid scintillator

•First located on the surface, than moved to final underground location


Near Detector on the Surface

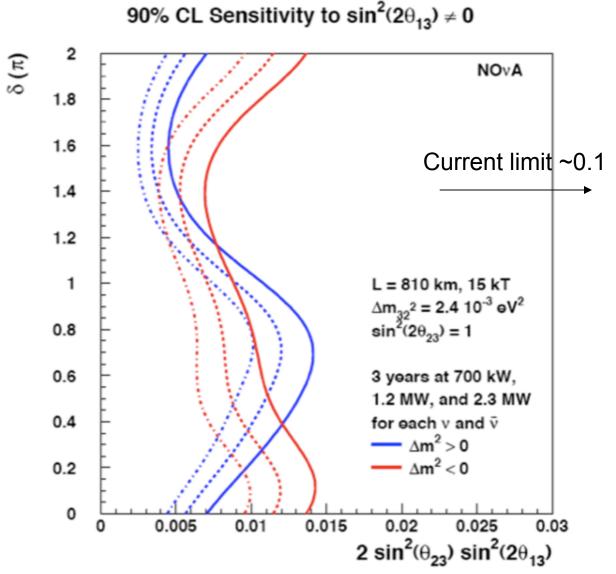
- The Near Detector on the Surface (NDOS) is the full near detector, located off axis near the MINOS surface building
- Used to investigate
 - Construction methods for the far detector
 - Study off-axis beam, tune simulation
 - Characterize surface backgrounds
 - Develop event selection algorithms
 - Demonstrate electron neutrino identification


NOvA Detector Simulated Performance

 v_{e} CC event

Neutral Current Easy to identify by gap between vertex and showers

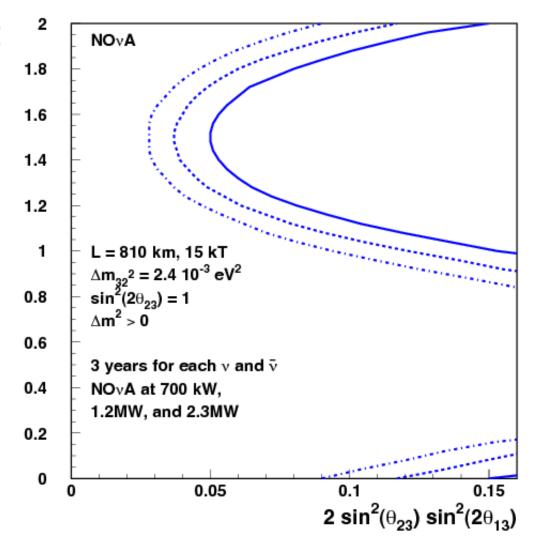
Neutral Current Highly electromagnetic final state. Develop ANN to try to reject



Sensitivity to Θ_{13}

•The blue curves assume normal mass hierarchy while the red curves show the inverted hierarchy case.

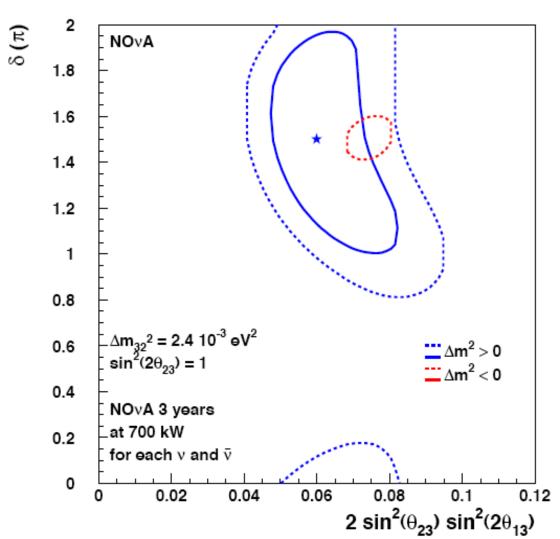
Sensitivity depends on mass hierarchy and δ
Solid line is planned beam energy (700kW), dashed curves represent beam upgrades


What are the relative masses of neutrinos?

s?

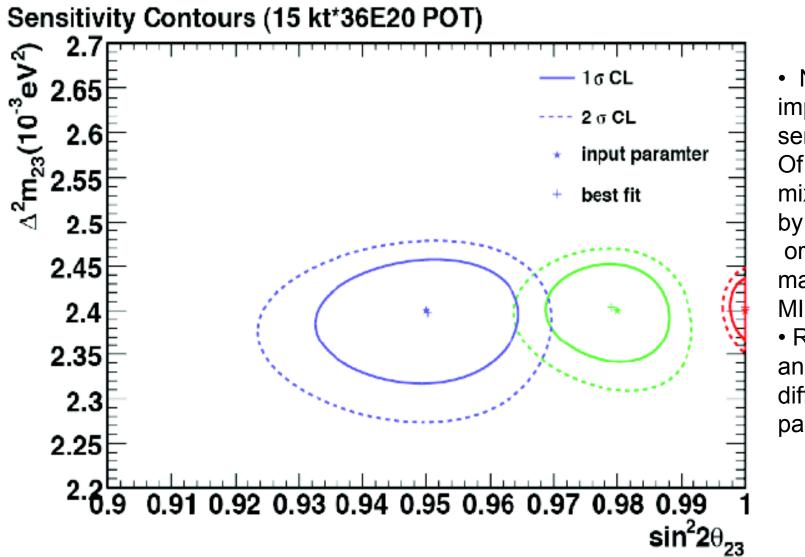
•For oscillation parameters to right of these curves, NOvA resolves the neutrino mass hierarch at 95% C.L.

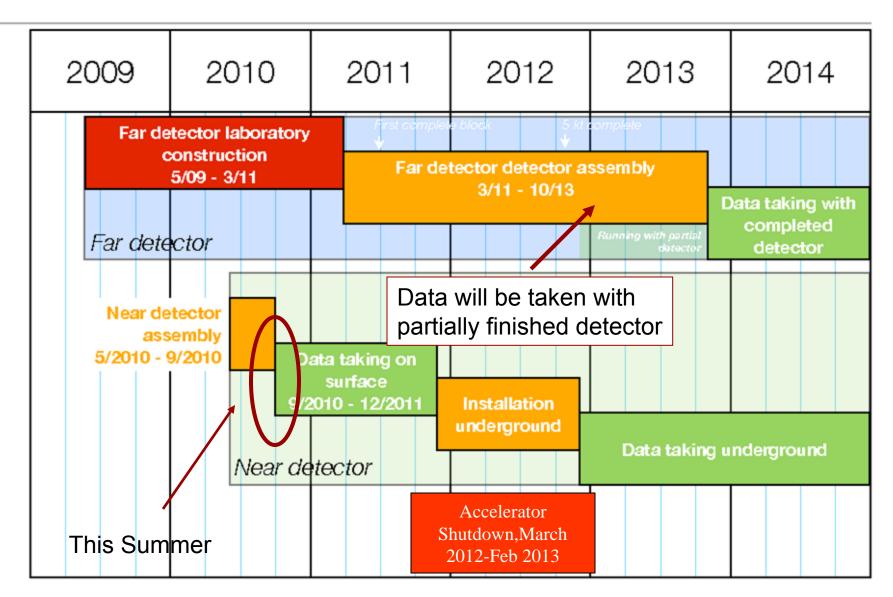
•The curves are calculated for a 15 kt detector, 6 years of running split evenly between neutrino and anti-neutrino running •Intensities at the baseline 700 kW as well as upgrades of 1.2 MW and 2.3 MW 95% CL Resolution of the Mass Ordering



Do Neutrino Oscillations violate CP?

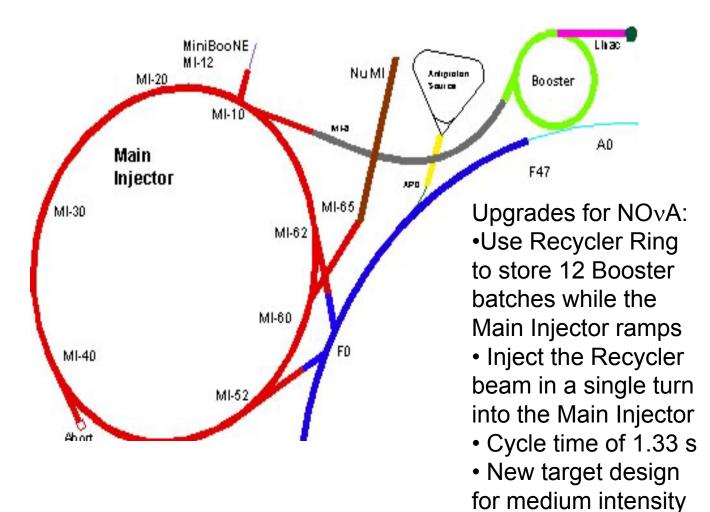
- NOvA provides the first look into the CP violating parameter space
- 1- and 2-σ measurement contours for NovA Oscillations with parameters chosen at the starred point.
- Sensitivity requires 3 years each of neutrino and antineutrino running


1 and 2 σ Contours for Starred Point for NOvA


Is Θ_{23} maximal?

• NOvA can improve the sensitivity Of the Θ_{23} mixing angle by over an order-ofmagnitude over MINOS. • Red, green and blue are different input parameters

NOvA Schedule



NuMI Operation

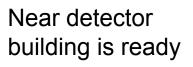
Current Situation The Booster injects 11 batches (9 for NuMI and 2 for antiproton production) into the Main Injector at 15 Hz

The Main Injector then ramps up, extracts the beam and ramps down in a 2.2s cycle time

running

Proton Plans

	Present Operating Conditions	Nova Multi- batch Slip- stacking in Recycler	Accelerator Upgrades Are on schedule
Number of 8 GeV Batches to NuMI	9	12	
MI Cycle Time (sec)	2.2	1.3	
MI Intensity (protons per pulse or ppp)	3.5x10 ¹³	4.9x10 ¹³	
NuMI Beam Power (kW)	310 kW	700 kW	20


- Near Detector will be first located in a newly constructed building near the MINOS service building
 - Near Detector service building is nearly finished and outfitted
 - Near Detector will be moved to final location, off-axis in an underground cavern near the minos detector, in ~1.5yrs
- Meanwhile, the far-detector infrastructure is also being constructed
 - Groundbreaking was May 1, 2009
 - Expect beneficial occupancy sometime at the end of this year

Far/Near Site Construction

Far Detector Site is under construction Above: 60 ft deep excavation with concrete floor Right: Looking up towards receiving dock and gluing area

PVC Extrusion

- PVC resin vendor and extruder has been selected
- PVC extrusions are made for Near Detector, extrusion factory is gearing up for Far Detector production

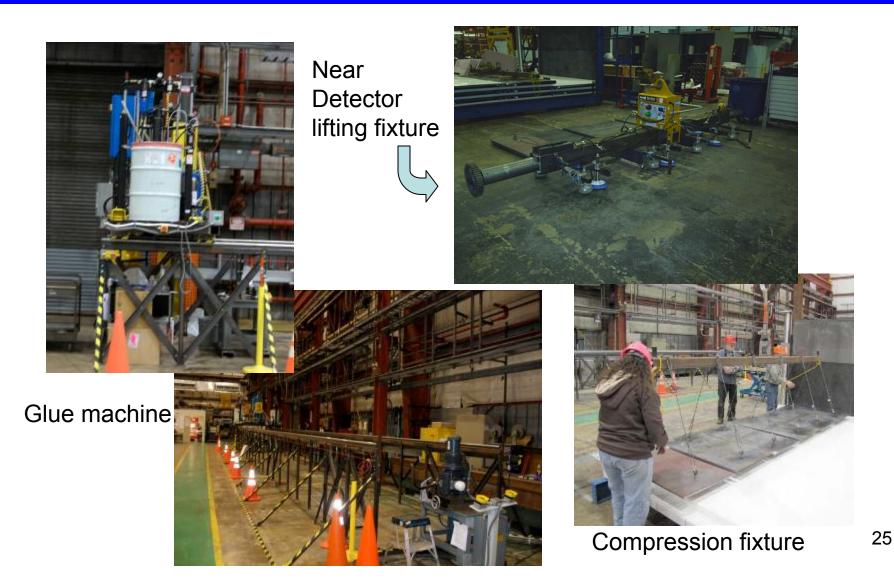
PVC extrusion coming off assembly line

New far detector extrusion dies

Module Factory

Module being strung with Fiber

The Module factory at University of Minnesota is producing near detector modules and gearing up for the production of far detector modules


New Far Detector Module Factory Space

Recently took occupancy of a new factory space big enough for construction of for far detector modules

Block Construction at Argonne

First Far Detector Prototype

- The FSAP (Full Size Assembly prototype) was the first far detector prototype.
- Several full size FD planes
- First test of assembly methods
- Finished Summer '09

Completed NDOS Prototype Block

The first mechanical prototype block (protoblock)

- Constructed at Argonne
- Raised in the MINOS service building

Block Handling

Raising the Problock at Argonne using a large crane

Test lowering the protoblock 300ft down into the MINOS shaft at Fermilab²⁸

First Near Detector Block

First block being shipped to Fermilab

- First block, finished in April, second block finished last week
- Block Construction is ongoing at Argonne
- Plan to be finished by mid-summer
- Instrumentation begins in June

Final Far Detector Prototype

The FHEP (Full Height Engineering Prototype) Far Detector Prototype will be constructed at Argonne in September-November

•Will be taken to Fermilab to be filled and stood up

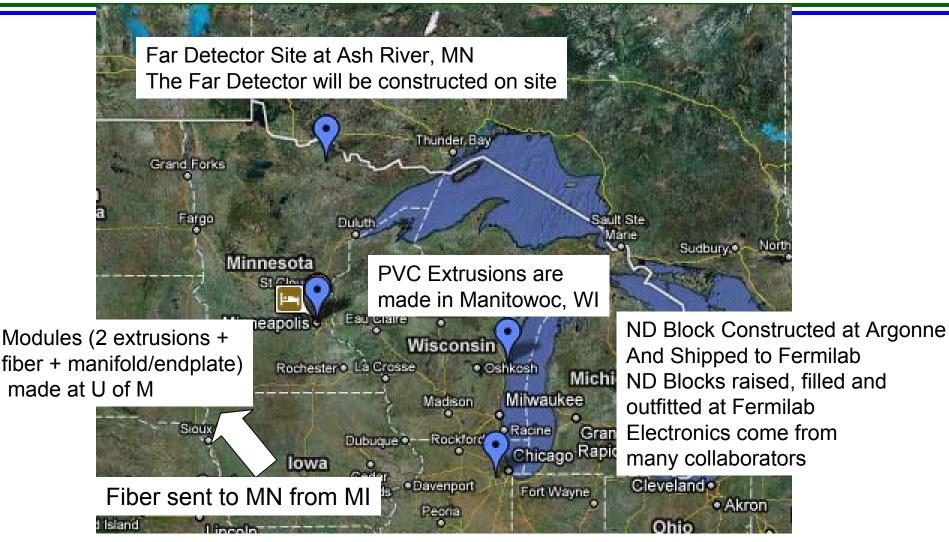
•Used to study filling, construction, long term PVC behavior

Far detector lifting beam in action

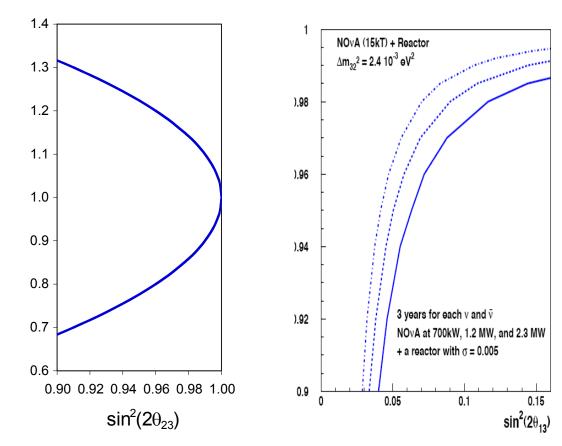
rusions

Conclusions

- The NOvA Experiment consists of two new detectors in an upgraded the NuMI Beamline
 - Off-axis FD is located at Ash River, MN
 - Near Detector located off-axis near MINOS cavern
- Sensitive to many neutrino mixing parameters
 - Measurement of θ_{13}
 - Determination of mass hierarchy
 - Measure δ_{CP}
 - Precise Measurement of $\sin^2(2\theta_{23})$
- Near Detector Assembly is underway
 - Should be taking data with the Near-Detector on the surface by this fall!
 - Expect to collect data on the surface for about a year
- Far Detector Assembly is also gearing up
 - Complete 2013, useful data before
- Accelerator upgrades are on track



Block Construction is a Group Effort


Reactor and Accelerator Experiments?



 Reactors sensitive to: sin2(2q13)

- Accelerators sensitive to: $2 \sin^2(\Theta_{23}) \sin^2(2 \Theta_{13})$
- Can be very different away from $\Theta_{23} = \pi/4! \rightarrow$
- Comparison of NOnA and
- Double Chooz/Daya Bay can break the
- ambiguity to determine whether n3 couples
- more to nm or nt
- 95% CL Resolution of the Θ_{23} ambiguity

2 sin²(θ_{23}) vs. sin²(2 θ_{23})

Masses are anomalously low

- Mass hierarchy is unknown:

Normal $(m_3 > m_1, m_2)$ or Inverted $(m_3 < m_1, m_2)$

Only fundamental fermion which can be its own antiparticle

 Majorana particle or Dirac particle?
 Could be responsible for the matter/antimatter asymmetry of the universe (leptogenesis)

- Seesaw mechanism for right-handed neutrinos
- Size of possible CP-violation in neutrinos?

 ν_{e} from the sun:

– $v_e \rightarrow v_\mu$ and $v_e \rightarrow v_\tau$ with $L/E \approx$ 15,000 km/GeV

– Mixing angle (θ_{12}) is large but not maximal v_{μ} produced in the atmosphere by cosmic rays & 1st generation accelerator experiments (K2K and MINOS):

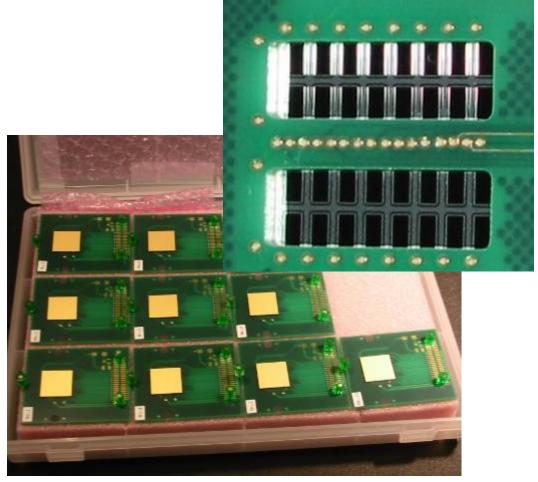
- $-~\nu_{\mu} \rightarrow \nu_{\tau}$ with L/E ≈ 500 km/GeV
- Mixing angle (θ_{23}) consistent with being maximal

Mixing Matrix

Relationship between weak eigenstates and mass eigenstates is given by a unitary rotation matrix:

 V_1

V2


 V_3

APD Photodetector



- Hamamatsu
 Si Avalanche
 Photodiode
 (APD)
 - Custom design to match to fiber aspect ratio
 - APD's are being ordered for the near detector

APD Advantage

Wavelength (nm)