Higgs Searches at the LHC

Jake Anderson

Fermilab

on behalf of the CMS and ATLAS collaborations

Outline

- **♣** 2011 LHC run
- CMS and ATLAS
- Overview and motivations
- Higgs searches
 - \circ H \rightarrow WW $\rightarrow \ell \nu jj$
 - \circ H \rightarrow WW $\rightarrow \ell \nu \ell \nu$
 - \circ $H \rightarrow ZZ \rightarrow 4\ell$
 - VH \rightarrow ($\ell v, \ell \ell, vv$)bb
 - \circ $H \rightarrow \gamma \gamma$
- Combined results
- Summary and outlook for 2012

2011 LHC performance

- During 2011 the LHC performed extremely well.
 - delivered: > 6 fb⁻¹
 - recorded: > 5 fb⁻¹/experiment
- Luminosity (and pile-up) steadily increased throughout the year.

The CMS and ATLAS detectors

Both spectrometers have maintained very high data taking efficiency.

Higgs production

Higgs decays

- There is not time to cover all the results on Higgs produced by CMS and ATLAS.
- I summarize some of the results.
- For a more complete list and treatment of results, please see:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

$H \rightarrow WW \rightarrow \ell \nu jj$

- \clubsuit Largest $\sigma \times BR$ over much of the mass range.
- Use W mass to constrain neutrino p_z for a peak in the 4-body mass.
- Large W+jets background at LHC.

Entries / 20 GeV

H → WW → ℓvjj limits

CMS 95% C.L. Exclusion: 327-415 GeV

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$

- Clean signature of two isolated leptons and large missing ET.
- Only irreducible background nonresonant WW production.
- Only a broad mass peak.

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ limits

CMS 95% C.L. Exclusion: 129-270 GeV

200

300

400

500

600 m_H [GeV]

$H \rightarrow ZZ \rightarrow 4\ell$

- Very low backgrounds.
- \clubsuit Excellent resolution on the m_H (1-2%).
- Primary background from non-resonant ZZ production.
- \bullet Relatively small $\sigma \times BR$.

$H \rightarrow ZZ \rightarrow 4\ell$ limits

$VH \rightarrow (\ell \nu, \ell \ell, \nu \nu)bb$

- Large BR for low mass Higgs.
- ♣ Large backgrounds at LHC
 - move to boosted regime $p_T > \sim 100 \text{ GeV}$

 \sqrt{s} = 7 TeV. L = 4.7 fb⁻¹

 $W(ev)H(b\overline{b})$

10 GeV

$VH \rightarrow (\ell \nu, \ell \ell, \nu \nu)bb$ limits

- $H \rightarrow \gamma \gamma$ is a key decay for a low mass Higgs.
 - excellent mass resolution (FWHM, 120 GeV)
 - ATLAS: 3.3-5.9 GeV
 - CMS: 2.6-4.9 GeV
 - manageable backgrounds

Minimal input from MC.

looking for a narrow bump on a monotonic background

$H \rightarrow \gamma \gamma$ limits

1.5σ including look elsewhere effect (LEE)

1.6σ including LEE

Combination

Each experiment has performed a combined search.

Combined limits (ATLAS)

ATLAS 95% C.L. Exclusion: 110-117.5, 118.5-122.5, 129-539 GeV

Combined limits (CMS)

CMS 95% C.L. Exclusion: 127-600 GeV

The most significant excess

- ❖ We can evaluate the most significant signal ~125 GeV.
- **The** H $\rightarrow \gamma \gamma$ channel dominates the measurements.
 - ATLAS also observes near-by signal in $H \rightarrow ZZ \rightarrow 4\ell$.

Conclusions and outlook

- Both ATLAS and CMS have aggressively searched for the Standard Model Higgs boson.
 - So far there are no significant excesses observed.
 - Experiments at the LHC exclude a SM Higgs boson at 95% C.L. over most of the mass range 110-600 GeV.
 - Tantalizing hints have been seen, but aren't conclusive.

6 2012 LHC goal
5 is 15 fb⁻¹ at 8
✓ TeV.

This may be theyear of Higgs atthe LHC!