

Mu2e Experiment at Fermilab

Yuri Oksuzian on behalf of Mu2e collaboration

Fermilab Users' Meeting, June 11, 2014

Mu2e

■ Mu2e will search for neutrino-less, coherent muon conversion into an electron

$$\mu^- + N \rightarrow e^- + N$$

■ Neutrino-less $\mu \rightarrow e^-$ conversion is Charge Lepton Flavor Violation (CLFV)

$$\mu \to e\gamma, \ \mu \to 3e, \ \tau \to e\gamma, \ \tau \to \mu\gamma...$$

- In the SM, μ →e $^-$ occurs at the rate of <10 $^{-50}$
 - Signal observation at Mu2e is unambiguous sign of new physics

 $Rate_{SM} < 10^{-50}$

 $Rate_{BSM} \sim 10^{-15}$

What do we measure?

Mu2e will measure the ratio of $\mu \rightarrow e^-$ conversions to the number of muon captures by A1 nuclei:

$$R_{\mu e} = \frac{\Gamma(\mu^{-} + (A,Z) \to e^{-} + (A,Z))}{\Gamma(\mu^{-} + (A,Z) \to \nu_{\mu} + (A,Z-1))}$$

Numerator

Mu2e will measure the ratio of $\mu \rightarrow e^-$ conversions to the number of muon captures by A1 nuclei:

$$R_{\mu e} = \frac{\Gamma(\mu^{-} + (A,Z) \to e^{-} + (A,Z))}{\Gamma(\mu^{-} + (A,Z) \to \nu_{\mu} + (A,Z-1))}$$

Denominator

Mu2e will measure the ratio of $\mu \rightarrow e^-$ conversions to the number of muon captures by Al nuclei:

$$R_{\mu e} = \frac{\Gamma(\mu^{-} + (A,Z) \to e^{-} + (A,Z))}{\Gamma(\mu^{-} + (A,Z) \to \nu_{\mu} + (A,Z-1))}$$

Dominant background

Mu2e will measure the ratio of $\mu \rightarrow e^-$ conversions to the number of muon captures by A1 nuclei:

$$R_{\mu e} = \frac{\Gamma(\mu^{-} + (A,Z) \to e^{-} + (A,Z))}{\Gamma(\mu^{-} + (A,Z) \to \nu_{\mu} + (A,Z-1))}$$

Mu2e Sensitivity

Mu2e will measure the ratio of $\mu \rightarrow e^{-}$ conversions to the number of muon captures by A1 nuclei:

$$R_{\mu e} = \frac{\Gamma(\mu^{-} + (A,Z) \to e^{-} + (A,Z))}{\Gamma(\mu^{-} + (A,Z) \to \nu_{\mu} + (A,Z-1))}$$

- Mu2e single event sensitivity: $R_{\mu e}$ = 2.5×10⁻¹⁷
 - Expect 4 events at $R_{\mu e}$ = 10⁻¹⁶
 - Expect 40 events at $R_{\mu e}$ = 10⁻¹⁵
- Mu2e planned sensitivity: $R_{\mu e}$ = 7×10⁻¹⁷ at 90% CL
- Mu2e needs to stop ~10¹⁸ muons
 - 3.6×10²⁰ protons on target (POT) over 3 years
- Need to keep background small and well understood
 - Total expected background 0.4 events

History of CLFV Searches

Mu2e Physics Reach

$$L = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(\kappa+1)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \sum_{q=u,d} \bar{q}_L \gamma_{\mu} q_L$$

State $\mu \rightarrow e\gamma$ $\mu \rightarrow e$ Sensitive **Yes Yes**

type operator

Contact term operator

State	μ→еγ	μ→e
Sensitive	No	Yes

Mu2e Physics Reach

Effective CLFV Lagrangian

$$L = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(\kappa+1)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \sum_{q=u,d} \bar{q}_L \gamma_{\mu} q_L$$

Magnetic moment type operator

Supersymmetry

Heavy neutrinos

Two Higgs Doublets

Contact term operator

Compositeness

Leptoquarks

Heavy Z'

Mu2e proton beam

- Mu2e will recycle the existing accelerator infrastructure
- Booster provides batches of 8 GeV protons to recycler
- Recycler divides proton batches into 4 smaller bunches
- Delivery ring gets 1 out of 4 bunches from recycler
- Mu2e gets the proton beam pulses from delivery ring every 1695 ns
- Mu2e runs simultaneously with NOvA
 - Using spare Booster batches
 - NOvA POT is unaffected by Mu2e

Mu2e apparatus

- Proton beam hits production target in Production Solenoid to produce π
 - Pions are reflected toward the transport solenoid

Mu2e apparatus

- Proton beam hits production target in Production Solenoid to produce π
 - Pions are reflected toward the transport solenoid
- Trasport solenoid:
 - Transports π^{-}/μ^{-}
 - Selects particle's momentum and charge
 - Avoids direct line of sight

Mu2e apparatus

- Proton beam hits production target in Production Solenoid to produce π
 - Pions are reflected toward the transport solenoid
- Trasport solenoid:
 - Transports π⁻/μ⁻
 - Selects particle's momentum and charge
 - Avoids direct line of sight
- Muons stop on Al stopping target
 - 50% of μ⁻ stop on the target
 - 1,000 POT \rightarrow 2 stopped muons
 - Conversion electron momentum and energy are measured in the tracker and calorimeter

Pulsed beam

- Prompt background: particles produced by proton pulse which interact almost immediately when they enter the detector
- Muons travel with pions. Pions produce background when captured on target

$$\pi^- N \to \gamma N^* \to e^+ e^- N^*$$

- Other examples of prompt backgrounds: beam electrons, μ/π decay in flight
- Solution: Suppress prompt backgrounds by employing a delayed signal window
- Delivery ring revolution period of 1695 ns is well matched for τ^{AI} = 864 ns
 - 50% of muons decay/captured in the signal window

Out-of-time Protons

- Out-of-time protons can give rise to prompt backgrounds in the signal window
- RF structure in Delivery ring and sweeping AC dipole in front of PS will suppress out-of-time protons by >10⁻¹⁰
- Only 1 in 10 billion POT will be outside of the main pulse

Decay In Orbit (DIO)

Tracker is "blind" to beam flash and 97% of DIO spectrum

Full Simulation

- Long tail from Michel peak. Signal is smeared.
- Need good momentum resolution.
 - 100 KeV momentum resolution is achievable

Tracker

- Low mass straw drift tubes
- 5 mm diameter straws
 - 12 μ m Mylar walls
 - Filled with 80/20 Ar/CO₂
- 25 μ m gold-plated tungsten sense wires
- 100 Straws = Panel; 6 Panel = Plane; 2 Planes = Station; Tracker = 20 Station

3.3 m

Cosmic Ray Veto

- Mu2e expects 1 signal-like event per day induced by cosmic rays
- Cosmic Ray Veto(CRV) consists of 4-layer scintillating counters
- CRV needs to reject 99.99% of cosmic rays, covering 300 m² of detector solenoid
- CRV has to be able to operate in high radiation environment

Calorimeter

- Two disks of BaF₂ scintillating crystals
 - BaF₂ fast time component
- Provides precise timing, PID, seed for tracking and triggering
- Complementary energy measurement

Background processes

Category	Source	Events		
Intrinsic	μ decay in orbit	0.20	士	0.06
Late-arriving	Radiative π capture	0.04	<u>±</u>	0.02
	Beam electrons	0.001	\pm	0.001
	μ decay in flight	0.010	\pm	0.005
	π decay in flight	0.003	\pm	0.002
Miscellaneous	Antiproton capture	0.10	<u>±</u>	0.06
	Cosmic ray	0.050	\pm	0.013
Total Background		0.4	土	0.1

■ All these backgrounds can be controlled to the level of <1 event

Mu2e Status

- CD-0 in 2009
- CD-1 in 2012
- Currently working on TDR, scheduled CD2/3 review this year
- Expect to start data taking ~2020
- Experiment was strongly supported by P5
 - Recommendation 22: "Complete the Mu2e and muon g-2 projects."
 - Fully funded in all budget scenarios

Mu2e R&D/Prototypes Efforts

Mu2e Collaboration

160 members from 28 institutions

Join us: <u>mu2e-spokespersons@fnal.gov</u>

Summary

- Mu2e has a great discovery potential and can reveal New Physics
- Mu2e will improve over previous conversion experiments by 4 orders of magnitude and will probe new physics mass scales of 10⁴ TeV
- "The existence of new particles that are too heavy to be produced directly at high-energy colliders can be inferred by looking for quantum influences in lower energy phenomena ... Some notable examples are a **revolutionary** increase in sensitivity for the transition of a muon to an electron in the presence of a nucleus Mu2e (Fermilab)" P5 report
- Experimental design is mature break ground this fall
- Lots of interesting projects to work on
 - You can help make a discovery!