Progress in Monte Carlo tools for quarkonia

Aafke Kraan
INFN Pisa

Quarkonium Working Group Meeting Fermilab, 18-21 May 2010

Outline

- Introduction
- Available event generators for quarkonia:
 - PYTHIA6
 - PYTHIA8
 - MadOnia
 - CASCADE
 - Non-prompt J/psi generators and other generators
- Wishlist from experimentalists to Monte Carlo experts
- Conclusion

Introduction: a typical LHC event

Introduction

- Reliable Monte Carlo tools are very important for data analysis at the LHC!
 - For preparation before running on real data
 - How many events can we expect at a certain pT/Eta
 - **–** ...
- Februari 2010: overview was given of quarkonia MC tools (Maltoni, A. K.)
 - → Conclusion: only few Monte Carlo tools on the market, and do not describe existing data very well
- Why?? The underlying production mechanism is not understood. So making Monte Carlo tools is not an easy task...

This talk:

- Monte Carlo tools from experimental point of view.
- Concentrate on MC tools for quarkonia <u>production</u> in pp collisions at LHC.
- For each Monte Carlo tool: general description, what is relevant/special for quarkonia, some practical info.

Slide from Fabio Maltoni, 19 February 2010

Two main types of Monte Carlo tools

"Predictor"

- "Theory" tools that can provide predictions for (more or less) inclusive observables.
- Represent the "BEST" th predicitons

Examples: MCFM, ALL current NLO codes

See talk F. Maltoni at 1-day quarkonium workshop CERN 19/02/10

"Event Generator"

- Fully exclusive description
- In general not the TH predictions but tunable [descriptive]
- Results in terms of events

Examples: Pythia MadOnia+Pythia,...

Focus here on event generators, i.e. tools that give something that can be processed through a detector simulation.

Prompt quarkonia with PYTHIA 6

- LO singlet and octet production is possible with PYTHIA 6
- Even though we know now that significant octet production is disfavoured by experimental data, for many purposes is sufficient to have a predictive and tunable program
- Via LHEF (Les Houches interface) can be linked with external ME programs
- Main flow: Generation **Hadronization Showers** of hard process Singlet production **Octet production** perturbative non-perturbative non-perturbative perturbative

See: http://home.thep.lu.se/~torbjorn/Pythia.html

PYTHIA: hard process

- Prompt J/ψ production with MSEL=61
- Turns on several sub-process (MSUB) producing colour singlet and octet states. For example:

- Each process has an NRQCD matrix-element.
 - Tuned to fit Tevatron data, see CERN-LHCb-2007-042
- The 2S states can be produced by changing NRQCD matrix elements, particle masses, BR (by hand)
- J/ψ feeddown not modelled well:
 - Feeddown from χ 's disagrees with data.
 - **Solution** Feeddown from ψ(2S) not included.
- Production of Y's along same line, with MSEL=62

```
PROCESSES:
421 g + g -> cc^{3}[3S1(1)] + g
422 g + g \rightarrow cc^{3}[3S1(8)] + g
423 g + g \rightarrow cc^{-}[1S0(8)] + g
424 g + g -> cc^{(3PJ(8))} + g
425 g + q -> q + cc^{3}[3S1(8)]
426 g + q -> q + cc^{-}[1SO(8)]
427 g + q \rightarrow q + cc^{3}[3PJ(8)]
428 q + q^{\sim} -> g + cc^{\sim}[3S1(8)]
429 q + q^{\sim} -> g + cc^{\sim}[1SO(8)]
430 q + q^{\sim} -> g + cc^{\sim}[3PJ(8)]
431 g + g -> cc^{(3P0(1))} + g
432 g + g -> cc^{3}[3P1(1)] + g
433 g + g -> cc^{2}[3P2(1)] + g
434 q + g -> q + cc^{2}[3PO(1)]
435 q + g \rightarrow q + cc^{2}[3P1(1)]
436 q + g \rightarrow q + cc^{3}[3P2(1)]
437 q + q^{\sim} -> g + cc^{\sim}[3PO(1)]
438 q + q^{\sim} -> g + cc^{\sim}[3P1(1)]
439 q + q^{\sim} -> g + cc^{\sim}[3P2(1)]
```

PYTHIA: low p_T divergencies

- But even with octet, prompt J/ψ cross section not right: too big at low p_T
- Solution: cross section dampened (MSTP(142) similar to what is done in PYTHIA for gg→gg in underlying event formalism:
 - Below a certain pT scale the individual colours in the proton cannot be resolved ⇒ cross section decreases

T.Sjöstrand, M.v.Z, PRD36,2019, 1987

Several uncertainties/ free parameters here.

Now MC prediction of pp cross section at 1.96 TeV (CDF) reasonable.

PYTHIA: parton showers and hadronization

Only relevant for octet production!

QQ octet fragmentation: different options for Altarelli-Parisi splitting function:

- AP splitting function of q→qg, but corrected for presence of 2 quarks
 ⇒small amount of radiation (MSTP(148=0))
- AP splitting function of g→gg, "follow" hardest gluon
 - ⇒medium amount of radiation (MSTP(149)=1, MSTP(148)=0
- AP splitting function: g→gg, symmetric (DEFAULT!)
 - ⇒large amount of radiation (MSTP(148)=1, MSTP(149)=1

Shower details influence octet cross section shape: more showering → fall steeper

Uncertainties: mass of octet, amount of radiation

Prompt J/psi production cross section at 14 TeV

CDF (p_T <20) compatible with all shower scenario's 9

PYTHIA: particle multiplicity dN/dη

Production model and shower details influence charged particle multiplicity

J/ψ→μμ production:
Study Δφ between J/ψ and other charged particle
(pT>0.5 GeV)

 Octet has more particles close to J/psi than singlet

Obviously, non-prompt
 J/ψ has real jet

Quarkonia with PYTHIA 8

- Basic physics is the same as in PYTHIA6, some technical differences:
- > Two ways to generate prompt quarkonia: 1) explicitly and 2) as part of multiparton interaction framework [PYTHIA6: only 1)]
- ➤ The OO structure of Pythia8 makes it simpler to extend/clone processes, so that e.g. Psi' production could be modeled as J/Psi (but input needed).

	РҮТНІА 6	PYTHIA 8	
main process switches	MSEL=61 MSEL=62	Charmonium:all Bottomonium:all	
sub process	MSEL=0, MSUB(421)=1,	Charmonium:gg2QQbar[3S1(1)]g,	Small translation
low Pt treatment	PYEVWT.f	SuppressSmallPT (UserHooks)	table
decay mode	MDME(858,1)=0, MDME(859,1) = 1	443:onMode = off 443:onIfAny = 13	tabic
NRQCD ME's	PARP(141)=,	Charmonium:OJpsi3S11=,	
shower parameters	MSTP(148)=0,1 MSTP(149)=0,1	TimeShower:octetOniumFraction (0→1) TimeShower:octetOniumColFac (0→4)	

Program and tutorials see: http://home.thep.lu.se/~torbjorn/Pythia.html

MadOnia

A multipurpose automatic matrix element generator for NRQCD amplitudes at treelevel, which is integrated in MadGraph/MadEvent

3 Steps:

- 1) Generate code for requested process
- 2) run code to calculate cross sections, distributions and unweighted partonlevel events
- LHEF
- 3) PYTHIA (or HERWIG) for showers and hadronization
- Automatic evaluation of any tree-level matrix element involving a heavy-quark pair in a definite spin and color ^{2S+1}L_J[1,8] state
- **Process syntax: e.g.** gg>gbb~[3S11to553], gg>ggbb~[3S11to553], gg>gggbc~[3S11to443]...
- Polarization information conserved for the 3S1[1]
- Only tree-level, no loop corrections

See: http://cp3wks05.fynu.ucl.ac.be/twiki/bin/view/Main/IntroQuarkonium http://cp3wks05.fynu.ucl.ac.be/twiki/bin/view/Software/MadOniaManual

What can be done for quarkonia with default Madgraph

See: http://madgraph.hep.uiuc.edu/

Examplea of studies that can be done with the <u>current</u> default Madgraph that is found <u>online</u>:

- Inclusive quarkonium production at LO: $gg \rightarrow Y+g$, $gg \rightarrow J/\psi+g$ ($\sim \alpha_S^3$)
- Higher jet multiplicities in quarkonium production
 Y+n jets, J/ψ+n jets(~α_sⁿ⁺²)
 each jet has to be resolved (minimum cut on jet pT and ΔR)
- Associated cc/bb production (α_s^4): pp→Y+bb, pp→J/Ψ+cc (see next!)
- ➤ All distributions of events produced by Madgraph are leading-order → large uncertainties in the normalization... Attempts to go beyond LO made (not yet integrated) see:

Maltoni etal, Phys.Rev.Lett.101:152001,2008, Artoisenet etal, JHEP 0802:102,2008, Lansberg, Eur.Phys.J.C61:693-703,2009

MadOnia example: associated charm production

Several contributions involving c-quarks are expected to contribute to inclusive J/ ψ production

With JP Lansberg

Maltoni etal, PhysLettB653,60,2007, Baranov, PhysRevD73, 074021,2006, Lansberg, PhysRevD81:0501501, 2010

- 1) Add NLO contribution to gg fusion: $gg \rightarrow J/\psi cc$ Signature: charm quark pair in association with J/ψ
- 2) Add LO charm-gluon fusion contribution: Signature: charm quark opposite to J/ψ

with J/ ψ $gc \rightarrow J/\psi c$ Differential cross section for PROMPT J/ ψ \Rightarrow $\mu\mu$ at 14 TeV: (|y|<0.5)

3) Add NLO contribution of cg fusion:

$$gc \rightarrow J/\psi c g$$

Signature: charm quark close or opposite to J/ψ

Contribution of charm at high pT could be 10% of total prompt production, low pT even more!
(but some uncertainty)

MadOnia example: Associated charm production

Quick look at J/ ψ events with 3 muons (BR(c $\rightarrow \mu$ X)~10%): 2 from J/ ψ , 1 from c

- Significant excess of 3-muon events in <u>prompt</u> production expected
- At high $P_T(J/\psi)$, characteristic signature from J/psi+c+g with 3rd lepton closeby J/ψ! ... but challenging to detect 3 very close high pT muons!

Could be useful to look at these kind of things in real data!

The CASCADE event generator

Different approach for initial shower evolution developed for small-x (quarkonia!) and forward physics (H.Jung etal)

Basic elements:

- Generation of hard process: off-shell matrix elements
 - tested at HERA and Tevatron
- **●** PDF's: k_T unintegrated PDF's:

$$\sigma(pp \to q\overline{q}X) = \int \frac{dx_{g1}}{x_{g1}} \frac{dx_{g2}}{x_{g2}} \int d^2k_{t1} d^2k_{t2} \hat{\sigma}(\hat{s}, k_t, \overline{q}) x_{g1} A(x_{g1}, k_{t1}, \overline{q}) x_{g2} A(x_{g2}, k_{t2}, \overline{q})$$

- Initial state parton shower: evolution based on angular ordering (CCFM)
 - At small x-values, pT of emissions can go up and down with evolution of the shower (PYTHIA initial state shower pT ordered: DGLAP)
 - Contains NLO components
- Proton remnants, final state parton shower, hadronization: PYTHIA

CASCADE at HERA

- Quarkonia implementation: Color Singlet Model (NRQCD matrix elements) with K_T factorization
- γp collision data (pT, z): description of shape and normalization ok, no need for octet!

CASCADE at the Tevatron

Using quarkonia ME from S. Baranov etal [Phys.Rev.D66, 114003, 2002]

- New!
- Recently lots of progress in description of heavy flavour production at Tevatron, see also talk by M. Krämer DIS2010!
- J/ψ inclusive cross section at Tevatron: shape and normalization not too bad

CASCADE at the LHC

Very recently CASCADE has been tested for J/psi at LHC!!

- Extension to Upsilon sector (easy)
- Extension to 2S and 3S states, but requires more work
- Interface to ATLAS ready, CMS almost ready, LHCb getting started

Other generators

Non-promt J/psi generators:

- MC@NLO: matching NLO QCD calculations with parton shower simulations.
 - Total rates are NLO!
 - Smooth transition between soft and hard
 - region
- CASCADE: similar results as MC@NLO
- PYTHIA: : minimum bias mode (CPU intensive)

Other generators on the market:

- BCVEGPY0.2 (B_c meson)
- LEPTO (DIS)
- **...?**

Wishlist

Wishlist from experimentalists to Monte Carlo theory experts:

- Everything needs to be in an official release of the generator code
 We highly prefer not to touch MC source code
- We understand less than you think... Provide example programs, input cards, explanations, which parameters can be tuned and which not to touch, etc.
- Output in the Les Houches standard format
- User friendly
- User support
- We cannot complain! The collaboration between experimentalists and Monte Carlo theory experts is already working quite well!

Conclusion

- > Experimentalists need Monte Carlo event generators to prepare and do analyses.
- Currently available event generators: PYTHIA6, PYTHIA8, MadOnia+PYTHIA, CASCADE, MC@NLO, ...
 - >PYTHIA: easy to use, tunable, but not all production aspects modelled well
 - ➤ MadOnia+PYTHIA: provides interesting possibilities, tools for full phase space predictions under development.
 - **➤ CASCADE:** new on the market for LHC experiments!
 - ➤ MC@NLO: non-prompt J/psi
- ➤ None of the prompt production generators includes exact NLO calculations.
 - New directions (merging LO matrix elements with PS, NLO with PS) that are being explored for other physics processes like ttbar, W, Z are not yet available for quarkonia.
 - **➤** But work in this direction is ongoing.

backup

MadOnia example: Associated charm production

Charm jets could be detected with b/c-tagging algorithm or using leptons from the decay

Where is the c-quark with respect to the J/ψ ??

