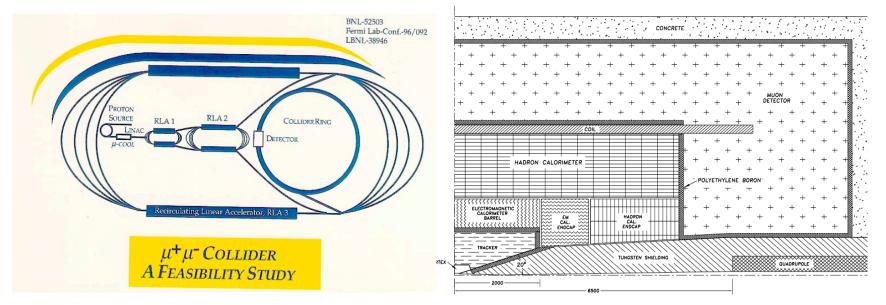


Muon Collider Physics Workshop

Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009


Tracking Options at a Muon Collider

Outline

- Machine and Detector Framework
- Background Considerations
- Tracking Performance Requirements
- Possible Options
- CluTim: a "zero-mass" Tracker

Machine and Detector Framework

Major sources of reference

J. Gallardo, R. Palmer, A. Tollestrup, A. Sessler, A. Skrinsky et al., *μ*⁺*μ*⁻ *Collider: A Feasibility Study* DPF/DPB Summer Study on New Directions for High Energy Physics, Snowmass, Colorado, 25 Jun – 12 Jul 1996, BNL - 52503, Fermilab - Conf - 96 - 092, LBNL - 38946, http://www.cap.bnl.gov/mumu/pubs/snowmass96.html

G. William Foster and Nikolai V. Mokhov, *Backgrounds and detector performance at a 2 x 2 TeV μ⁺μ⁻ collider* AIP Conf. Proc. 352 (1996) 178, http://lss.fnal.gov/archive/test-preprint/fermilab-conf-95-037.shtml

Stumer et al., *Study of detector backgrounds in a* $\mu^+\mu^-$ *collider* Snowmass 96, http://www.slac.stanford.edu/pubs/snowmass96/PDF/DET081.PDF

Muon Collider Physics Workshop Machine - Detector - Physic November 10-12 (Tuesday-Thursday), 200

Background Considerations Machine induced backgrounds

No attempt to take into account bunch length and beam time structure All backgrounds considered instantaneous and synchronous (except neutrons)

muon halo

muons lost from the beam bunch and unshielded rate depends on beam profile, halo, losses and shield

beam-beam interactions

coherent and incoherent, maybe negligible

muon decay

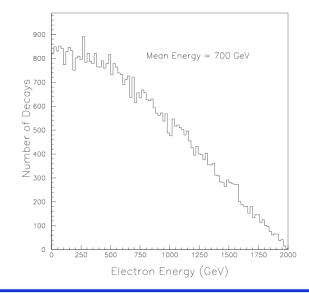
2x10¹² 2 TeV muons generate 6x10⁹ electrons m⁻¹ s⁻¹ consider only those in the final 130 m straight section.

🛟 Fermilab

Background Considerations Electron induced background

electromagnetic showers

photons mean energy 1 MeV. Uncorrelated noise hits in a tracker with 2 Tesla field.

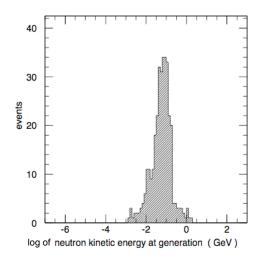

(700 Gev) *electrons* synchrotron radiate,in the quadrupoles, 300 photons in average with 500 MeV mean energy (≤ 20%)

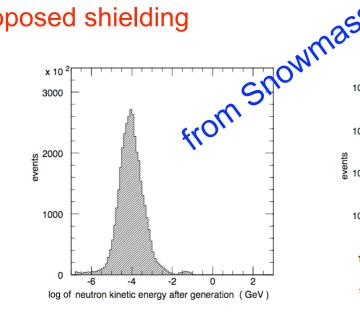
Bethe-Heitler muon pairs

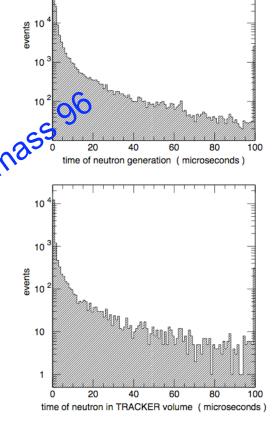
probability of 6x10⁻⁴ and mean muon momentum of 27 GeV.

hadron background

from photon interaction in the shielding

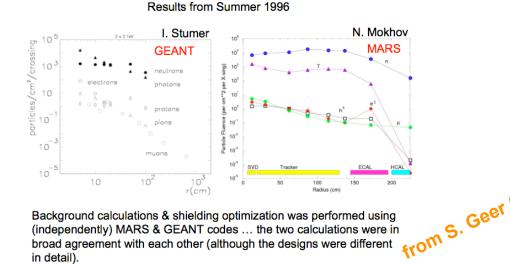

Fermilab


Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009


Background Considerations Photon induced background

hadron background

more than one neutron and one proton from each photon interaction in the shielding. Rate model dependent. Including the proposed shielding


Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009

F. Grancagnolo - Tracking Options at a MC - Nov. 11, 2009

10

Background Fluences

General agreement on predicted fluences despite many different details. Shielding (Cu, polyboron, W) cones are included.

Low Emittance Muon Collider Workshop

4 TeV Collider Backgrounds

Particles/cm² from one bunch with 2×10^{12} muons (2 TeV)

	GEANT (I. Stumer) Results from LBL Workshop, Spring 1997						
	r (cm)	γ	n	р	π	е	μ
	5	2700	120	0.05	0.9	2.3	1.7
	10	750	110	0.20	0.4		0.7
	15	350	100	0.13	0.4		0.4
	20	210	100	0.13	0.3		0.1
	50	70	120	0.08	0.05		0.02
, 9	100	31	50	0.04	0.003		0.008
	calo						0.003
	muon						0.0003
Thresholds: E_{γ} >25KeV, E_{n} >40KeV, E_{p} >10MeV, E_{π} >10MeV							ı
ţ	Fermilab Steve Geer Low Emittance Muon Collider Workshop February 2007					ary 2007	

Fight the high flux of particles in the detector either with the **highest granularity** or with the **least interacting** detector

February 2007

🛟 Fermilab

Fermilab

Steve Geer

Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009

Detector Occupancy

for vertex detector fight with the highest granularity

VERTEX DETECTOR HIT DENSITY

- Consider a layer of Silicon at a radius of 10 cm.
- GEANT Results (I. Stumer) for radial particle fuxes per crossing:

750 photons/cm ²	\rightarrow 2.3 hits/cm ²
110 neutrons/cm ²	\rightarrow 0.1 hits/cm ²
1.3 charged tracks/	$cm^2 \rightarrow 1.3 hits/cm^2$
TOTAL	3.7 hits/cm ²

- from \$. Geer 07 • \rightarrow 0.4% occupancy in 300x300 μ m² pixels
 - MARS predictions for radiation dose at 10 cm for a 2x2 TeV Collider comparable to at LHC with L=10³⁴ cm⁻²s⁻¹
 - At 5cm radius: 13.2 hits/cm² \rightarrow 1.3% occupancy

Fermilab

Steve Geer

Low Emittance Muon Collider Workshop

February 2007

8

Muon Collider Physics November 10-12 (Tuesdav-Thursd

Detector Occupancy

for tracking detector fight with the least interacting media

Example: drift chamber gas (1 MeV photon absorption in Ar/He =10) inner wall of drift chamber made of 0.125 mm of C-fibre

	photons		neutrons		charged		tot	Tot*
cm	#/cm²	Hits/cm ²	#/cm²	Hits/cm ²	#/cm²	Hits/cm ²	Hits/cm ²	Hits/cm ²
20	210	0.35	100	0.08	0.53	0.53	0.96	0.77
50	70	0.06	120	0.09	0.15	0.15	0.30	0.15
100	31	0.03	50	0.04	0.05	0.05	0.12	0.05

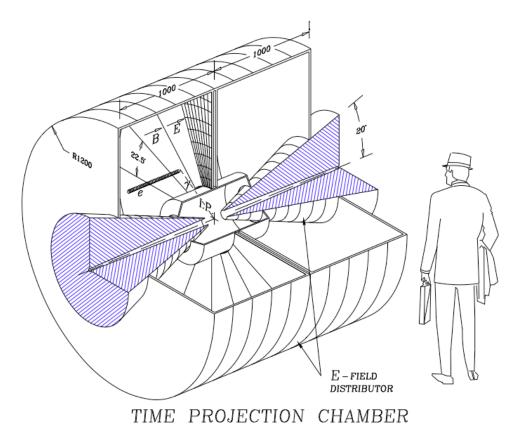
Major contribution to charged particles comes from pions Tot* when neutrons and protons iare integrated over first 1 μs) For a high granularity drift chamber (50 mm² drift cells), occupancy would be marginal only at the inner layers.

🛟 Fermilab

Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009

Tracking Requirements

	Detector Performance Requirements.					
	Detector Component	Minimum Resolution/Characteristics				
Magnetic Field		Solenoid; $B \ge 2 T$				
	Vertex Detector	b-tagging, small pixels				
	Tracking	$\Delta \mathrm{p}/\mathrm{p}^2 \sim 1 \times 10^{-3} (\mathrm{GeV})^{-1}$ at large p				
		High granularity				
	EM Calorimeter	$\Delta { m E/E}{\sim 10\%/\sqrt{ m E} \oplus 0.7\%}$				
	EM Calorimeter	Granularity: longitudinal and transverse				
	1025	Active depth: $24 X_0$				
	Hadron Calorimeter	$\Delta ~{ m E/E}{\sim}~50\%/\sqrt{{ m E}}\oplus2\%$				
S.		Granularity: longitudinal and transverse				
Fromso		Total depth (EM + HAD) $\sim 7\lambda$				
·	Muon Spectrometer	$\Delta \mathrm{p}/\mathrm{p} \sim 20\%$ 1 TeV				


🛟 Fermilab

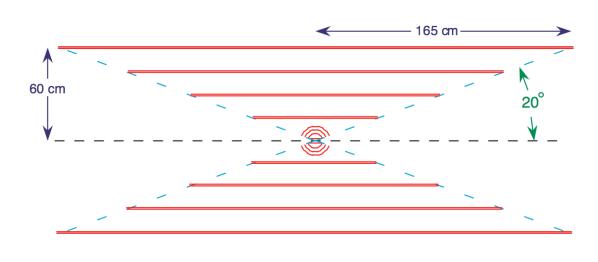
Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009

Proposed Alternatives (1)

Low field large gas tracking volume

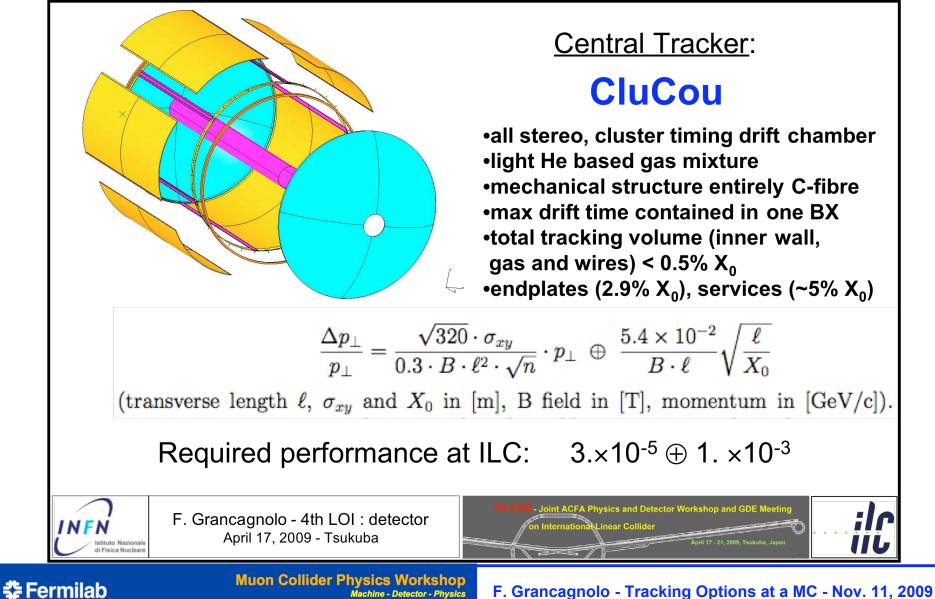
 R_{in} =35cm, R_{out} =120cm, σ_{ω} =80 μ m, σ_{z} =300 μ m, B=2Tesla, readout=3x4mm² **Criticisms:**

- can't operate in He (too slow, too small n_p)
- Ar (10x) and Ne (5x) larger photon interact.
- positive ion backflow at amplification region
- E-field distortions in the drifting volume due to build up of the primary ionization of the large background
- Iarge channel count (1M)
- thick end-plates

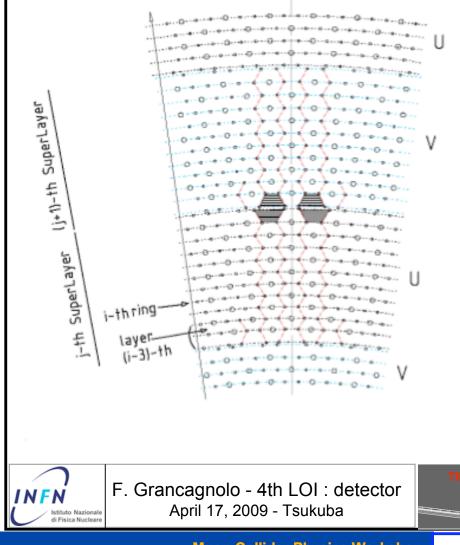


Muon Collider Physics Wor November 10-12 (Tuesdav-Thursdav).

Proposed Alternatives (2)

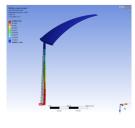

High field compact Si tracker

4 inner pixel layers $50x50\mu m$ + 4 outer μ strip layers $50x300\mu m$ B = 4 Tesla, $0.15X_0$ at 90°



Criticisms:

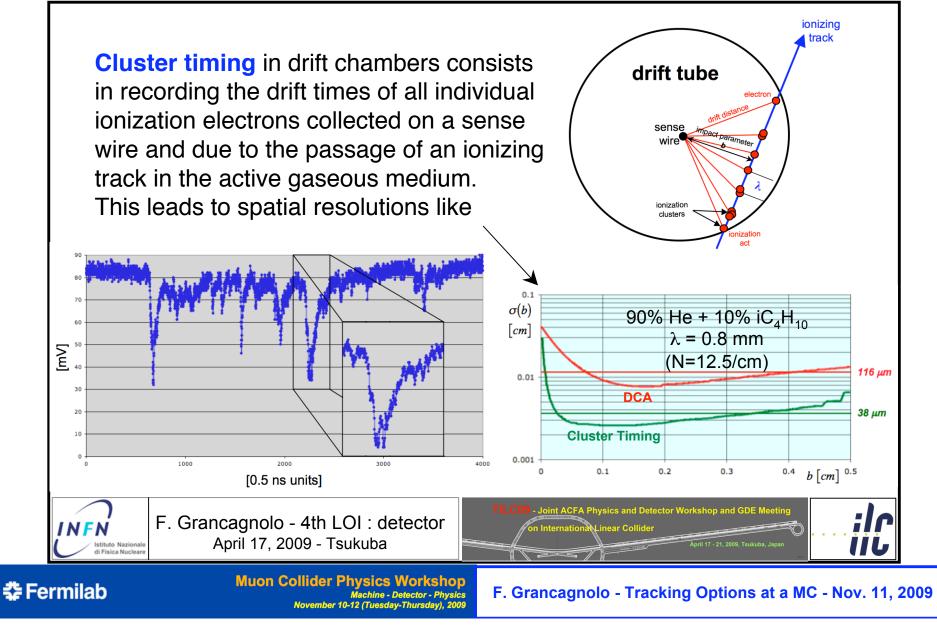
- radiation hardness
- Iack of redundancy
- difficult track finding (bkgnd)
- no Kinks, no Vees
- underestimated excessive thickness (15% X₀)
- very large channel count (10⁸-10⁹ channels)
- power dissipation

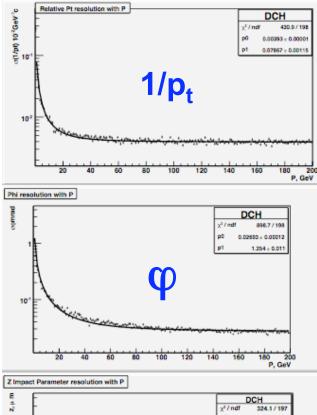

November 10-12 (Tuesdav-Thursdav), 2

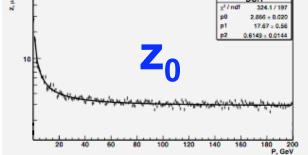
General layout based on successful operation of KLOE drift chamber

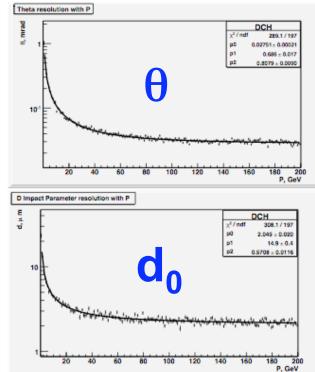
 $\begin{aligned} R_{in} &= 19 \text{ cm} \\ R_{out} &= 150 \text{ cm} \\ R_{dome} &= 242 \text{ cm} \end{aligned}$

Cell size from 0.4 cm to 0.7 cm side 160 axial measurements (on average) Stereo angles from 55 mrad to 220 mrad # sense wires = 66000 (5X KLOE) # field wires = 150000 (4X KLOE)



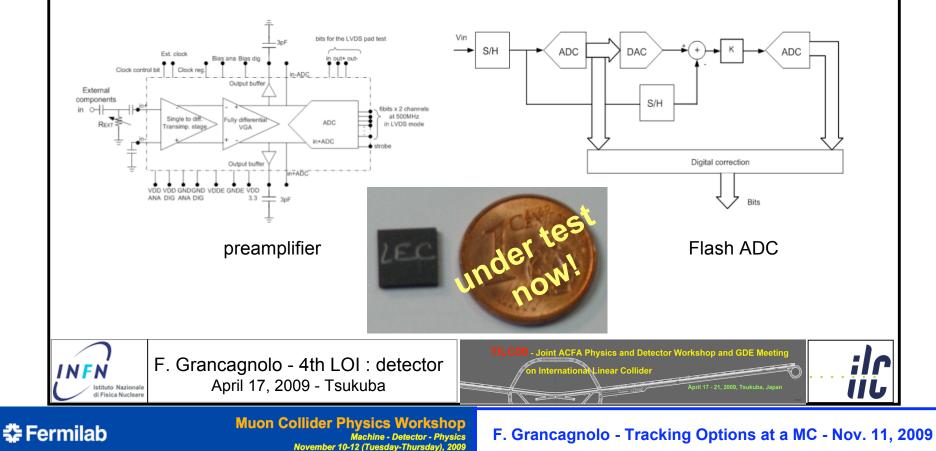

Design, structural stability, types of carbon fiber and other component materials are given in a mechanical engineering thesis, together with a strategy for the wiring procedure, taking into account the deformation of the structure while the wires are tensioned.





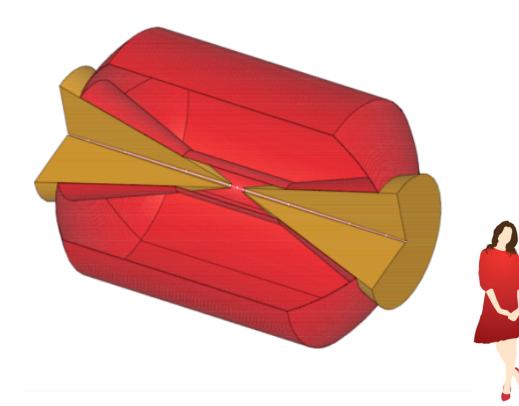
Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009

CluCou


Track parameters resolutions

track parameter	fit results stochastic term	multiple scattering term		
$\sigma(1/p_T)$	$3.9 \times 10^{-5} \ (GeV/c)^{-1}$	\oplus 7.9 × 10 ⁻⁴ /p _T		
σ_{θ}	$0.69 \text{ mrad}/p_T^{0.80}$	\oplus 0.027 mrad		
σ_{ϕ}	$1.25 \text{ mrad}/p_T$	\oplus 0.027 mrad		
σ_d	14.9 $\mu m/p_T^{0.57}$	\oplus 2.0 μ m		
σ_z	$17.7 \ \mu m/p_T^{0.58}$	\oplus 2.9 μ m		

🛟 Fermilab


Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009

The implementation of the cluster timing technique requires a **low cost**, **high-speed**, **low-power** electronic interface able to process the drift signals. We have designed a CMOS 0.13µm integrated readout circuit, including a **fast preamplifier** (with a -3dB bandwidth of **700 MHz**) and **1 GSa/s-6bit ADC** to fulfill all the requirements for cluster timing. (2nd version by June 2009)

New Tracker Option @ MC

"CluTim"

20 degrees W cones B = 4 Tesla $R_{in} = 20 \text{ cm}, R_{out} = 120 \text{ cm}$ σ_{xv} = 60 μ m $\sigma_{z} = 300 \,\mu m$ cell size = 4-6 mm hex. # of layers = 133 # of s.w. = 50,000 (20 µm W) # of f.w. = 115,000 (80 µm Al) X_0 (gas+w.) = 2.44x10⁻³ δ (gas+w.) = 6.94x10⁻⁴g/cm³

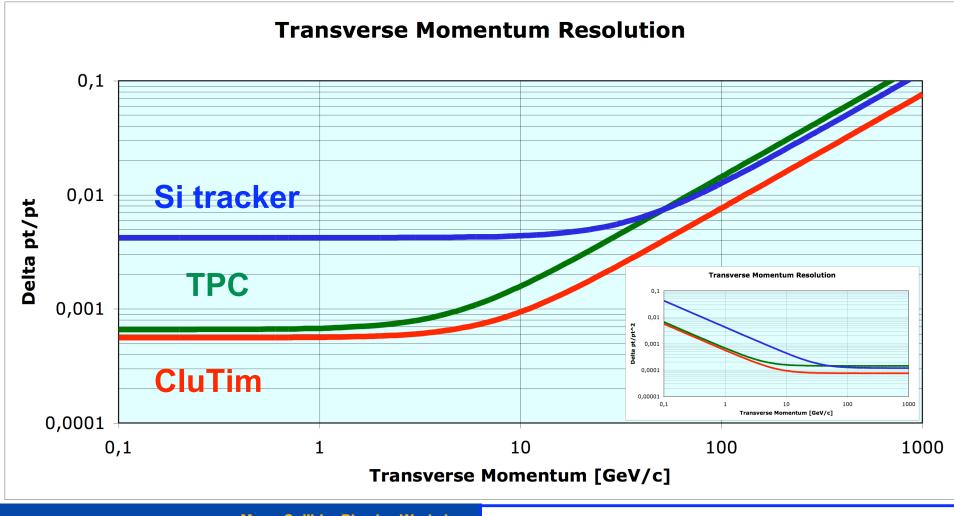
🛟 Fermilab

Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009

Expected Momentum Resolution

$$\frac{\sigma_{p_{\perp}}}{p_{\perp}^{2}} = 0.76 \times 10^{-4} \oplus 5.60 \times 10^{-4} / p_{\perp} \sin \vartheta \left[\frac{GeV}{c} \right]^{-1}$$

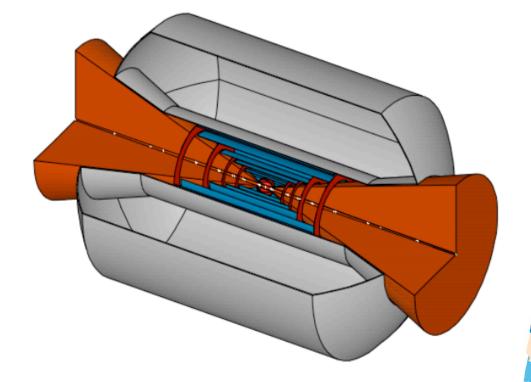
Just for comparison, the expected momentum resolution for the considered alternative detectors


TPC

Si

 $1.44 \times 10^{-4} \oplus 6.62 \times 10^{-4} / p_{\perp} \sin \vartheta$ $1.20 \times 10^{-4} \oplus 42.2 \times 10^{-4} / p_{\perp} \sin \vartheta$ gas 90%Ne-10%CF₄ - X₀ = 345 m
 $\sigma_{r\phi}$ = 100 µm $0.05 X_0$ (instead of 0.15 indicated)
 $\sigma_{r\phi}$ = 10 µm200 measurements along the track
L = 120 - 35 cm
B = 4 Tesla $0.05 X_0$ (instead of 0.15 indicated)
 $\sigma_{r\phi}$ = 10 µm

🛟 Fermilab


Expected Momentum Resolution

🛟 Fermilab

Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009

...a better option: Hybrid CluTim

20 degrees W cones 5 inner Si ustrip cylinders (total $X_0 < a$ few %) 5 inner Si pixel disks B = 4 Tesla $R_{in} = 50 \text{ cm}, R_{out} = 150 \text{ cm}$ σ_{xv} = 60 μ m $\sigma_{z} = 300 \,\mu m$ cell size = 5-7 mm hex. # of layers = 107 # of s.w. = 52,000 (20 µm W) # of f.w. = 120,000 (80 µm Al) X_0 (gas+w.) = 2.54x10⁻³ δ (gas+w.) = 7.10x10⁻⁴g/cm³

🛟 Fermilab

Muon Collider Physics Workshop Machine - Detector - Physics November 10-12 (Tuesday-Thursday), 2009

Conclusions

- Tracking at a Muon Collider is very challenging ...
- Two different strategies may be applied to cope with the huge bkgnds:
 - increase detector granularity
 - increase **transparency** to neutrals and use low **density** for electrons
- Of the proposed tracking options
 - **TPC** suffers from longer integration of bkgnd, heavier and more interacting gas, more material overall, problem of ion build-up
 - **Si tracker** suffers from lack of redundancy (cannot afford too many planes) and complicated track finding, besides radiation
 - **CluTim** alone may not be able to cope with bkgnd at small radii and increasing its granularity impairs the transparency.

• Hybrid CluTim (SiCT) could suggest a promising solution to the problem. Integrate the Si tracker with the vertex (as close as possible to the interaction) and let the outer chamber solve the track finding, leaving a Si plane as close as possible to the chamber to increase lever arm and to join track segments.