

Quantification of Q₀ requirements for cavities

Matthias Liepe, Hasan Padamsee
Presenter: Georg Hoffstaetter
Cornell University

Outline

minimize cost (construction +operational)

Reduce cryo-power

Cavity frequency choice

Operating gradient choice

Operating temperature choice

Cavity preparation choice

Note: Particular importance for CW SRF linacs, e.g. Project-X, x-ray ERL.

Intrinsic Q – Power and Cost

- R&D focus during the last years was on (and should have been) on achieving highest possible fields
- But: High gradients only economically usable if accompanied by high intrinsic quality factors

$$P_{diss,cavity} = \frac{1}{2} R_s \int_{S} |\vec{H}|^2 ds = \frac{V_{acc}^2}{2Q_0 (R/Q)_{cav}}$$

$$P_{total,linac} = \frac{V_{total} E_{acc}}{2Q_0 \frac{(R/Q)_{cav}}{L_{cav}}}$$

- Current typical Q-values: 1·10¹⁰ to 2·10¹⁰
- ⇒ Cost optimal gradient for ILC-type pulsed operation:~ 35MV/m
- ⇒ Cost optimal gradient for cw operation: 15 to 20 MV/m

Impact of high intrinsic Q

- Improve Q by factor of 2:
 - \Rightarrow Increase energy by factor of $\sqrt{2}$ with same linac length and same cryo power (assuming no quench limitations)
 - ⇒ Or: Reduce linac length by factor of 2 (double gradient)

$$P_{total} = \frac{V_{total} E_{acc}}{2Q_0 \frac{(R/Q)_{cav}}{L_{cav}}}$$

- ⇒ Intrinsic Q has high impact on cost and science potential!
- \Rightarrow Future accelerators (TeV lepton collider, FELs, ERLs, cw Project-X) would greatly benefit from intrinsic Q-values at or above $2\cdot10^{10}$

Intrinsic Q – Outstanding Examples

Single-cell cavity (Courtesy CEA Saclay)

9-cell ILC cavity (Courtesy HZB)

- Exceptionally high intrinsic Q-values of 5·10¹⁰ to >1·10¹¹ have been achieved in a few cavities in <u>vertical acceptance</u> <u>tests</u> (i.e. not in full cryomodules)
- Huge potential...

Intrinsic Q – poor reliability

- Significant variation in medium field Q-values
- Poor repeatability of high Q results
- No systematic understanding

Cavities inside cryomodules (1)

Complete TTF-cryomodule type III

(Courtesy of R.Lange et al. DESY MKS)

Meas Qo/Eacc average gradient 10Hz 500/800us

Q₀ versus Eacc in the BNL ERL prototype cryomodule

- Cavities installed in cryomodules show more modest to much lower intrinsic quality factors, even at medium fields.
- Average Q-value for cavities in cryomodules significantly lower than in vertical acceptance tests
- No exceptionally high Q-values achieved so far (>2.5·10¹⁰)

Cavities inside cryomodules (2)

Q₀ versus Eacc in the Cornell ERL Prototype

- ⇒ Varying degrees of Q-degradation of cavities in real linac in cryomodules
- Potential reasons:
 - Q-degradation and field emission from dust introduction (beamline HOM absorbers?)
 - condensed gases,
 - insufficient magnetic shielding
 - •

RF frequency and Operating temperature

Dynamic Cavity Losses (1)

• BCS theory: Frequency and temperature dependence of surface resistance at low RF fields (T_c : s.c. transition temperature)

$$R_{BCS} \propto f^2 e^{(-const*T_C/T)}$$

More resistance the more the electrons are jiggled around.

More resistance the more nc electrons are excited.

• Real live: $R_s = R_{BCS} + R_{RES}$

Dynamic Cavity Losses (2)

Total power dissipated into cavity wall:

$$P_{diss} = \frac{1}{2} R_s \int_{S} \left| \vec{H} \right|^2 dS = \frac{V_{acc}^2}{R / Q \cdot G} R_S$$

- (R/Q)G given by cell shape and number of cells
- \Rightarrow minimize surface resistance R_s
 - \Rightarrow operate cavity at temperature such that $R_{BCS} < R_{res}$
 - \Rightarrow R_{res}, i.e. independent of frequency!
 - \Rightarrow For given accelerating field gradient E_{acc} :

$$\frac{P_{diss}}{\text{active cavity length}} \propto \frac{1}{\left(R/Q\right)/\text{length}} \propto \frac{1}{f}$$

 \Rightarrow High frequency preferred in the regime $R_{BCS} < R_{res}$

Cooling Power for Dynamic Losses (for a given accelerating gradient)

⇒ 1.8K. Note: Lower T is unproven and might cause instability in the cryo-system.

Choice of Temperature The lower the better?

- Lowering the temperature seems to be effective approximately as long as Q = Q(T) follows BCS and the temperature dependent dynamic loads dominate (reasonable lower limit 1.5 K)
- He-II cooling might become unstable below 1.8 K
 tests required
- Another cold compressor stage is required for each 0.2 K temperature step to lower temperatures – investment costs and system complexity increase
- See for example: Talk by B. Petersen, ERL 2005

Choice of frequency (1)

- Unless extremely small residual surface resistances become reality in SRF cavities in the future, higher frequency (e.g 1.3 GHz) SRF cavities give smaller dynamic cavity losses at optimized temperature
 - Important for multi-GeV cw linacs!
 - Additionally: Cavity surface area

 1/f²
 - ⇒ Higher frequency gives smaller risk of cavity performance reduction by surface defects, electron field emission by dust, ...

Choice of frequency (2)

- Why chose <1 GHz anyway in some cases?
 - Transit time factor considerations for β <1 linacs
 - HOM considerations for very high current linacs
 (>~100mA) to reduce beam breakup and HOM heating

— ...

- But: Construction cost increases with lower frequency!
- But: Operational cost increases with lower frequency!
- But: Risk of surface contamination increases with lower frequency.

Conclusion (1)

- For 5 GeV, 100 mA ERL:
 - Fundamental mode frequency of 1.3 GHz and realistic operating temperature of ~1.8 K minimize AC cooling power
- Lower frequency would be beneficial if higher BBU threshold were required
 - Can increase BBU threshold 1/f (for samé number of cells per cavity)
 - Note: Other things can have similar / larger impact on the BBU threshold current
 - The chrage per bunch increases when every bucket is filled, increasing space charge forces.

Q0 and Optimal Field Gradient

SRF Linac Cost Estimation

SRF cyomodules

- # of cavities
- # cells per cavity
- fill factor
- . . .

RF Power Sources

- Power per cavity
 - QL, microphonics
 - . . .
- # of cavities

Tunnel

Linac length

Cost model (main linac only!)

Cryo-Plant

- Cryo-loads at various temperatures
 - Field gradient
 - Operating temperature
 - ...
- Note: cost ∝ power^{0.4}

Note: R&D cost and SRF facility cost are not included in following example of a 5GeV ERL!

Example: Cost dependence on accelerating field graident for 5GeV

ERL Main Linac cost distribution For Eacc = 16.2MV/m

 Costs for cryomodules, cryogenic plant, and the RF power sources are similar.

Optimal Accelerating Gradient

- Q₀-value has significant impact on cost (high impact and risk parameter)
- Construction cost changes only moderately for gradients between ~16 and ~27 MV/m
- Operating cost / AC power increases with gradient
- Select gradient at lower end: <u>16.2 MV/m</u> ⇒ <u>Less risk for same cost!</u>

Field Emission

Gamma radiation measured at DESY/FLASH from cavity field emission (PULSED CAVITY OPATION!):

- Exponential growth in FE with gradient
- Serious problem in <u>cw cavity</u> operation
- Low trip rate essential for light source!
- Favors lower gradients
- High reliability: don't push gradient and RF power to limit
- \Rightarrow 16.2 MV/m
- •For ERL : 10μ Gy/h * 200 (for cw)= 2 mGy/h = 0.2 rad/h
- •10 years of operation: <u>100 Gy = 10,000 rad</u> (at 5000h/year)
- •Same as FLASH/XFEL at ~ 25 MV/m
- ⇒ Need strong shielding of electronics in tunnel!

Conclusion (2)

- CW cavity operation favors operation at modest field gradients of 15 to 20 MV/m
 - ⇒ Near cost optimum
 - ⇒ Reduced operation cost (AC power)
 - ⇒ Reduced risk of field emission and poor cavity performance

Note: Cavity designs with high surface electric peak fields might require operating at even lower fields!

- ⇒ Increased reliability
- ⇒ Simplified cavity preparation (compared to ILC)

Q₀ and cavity preparation

Residual Resistance

- Several sources are known to increase residual resistance:
 - Trapped flux for DC external field ⇒ magnetic shielding of Earth's magnetic field

$$R_{\Phi} \approx \frac{H_{\text{ext}}}{2H_{\text{c2}}} R_{\text{n}}$$

- Q-disease from hydrides ⇒ Reduce H-concentration
- But: Cavities with similar magnetic shielding show Q-values between 1·10¹⁰ and 1·10¹¹!
 - ⇒ Several other factors must play an important role...

Medium field Q-slope – understood?

- Most cavities show modest to significant reduction in Q from low to medium fields (5 -> 25 MV/m)
- Proposed models usually combine
 - Field depended surface resistance

Surface Resistance:
$$R_s(B) = R_{s0} \left[1 + \gamma \left(\frac{B}{B_c} \right)^2 + O(B^4) \right]$$

- Thermal feedback $R_{BCS}(T)$
- But: medium field Q-slope strength varies a lot (factor 2 to 5)

But: no good understanding of physics and best surface treatment to minimize Q-slope

Medium field Q-slope – EP / BCP

- Smaller medium field Q-slope in BCP cavities vs. EP cavities?
- Which surface treatment gives the highest Q-values realizably?

Medium field Q-slope – heat treatment

- Low (~120 C) and high temperature (800C to 1400C) heat treatments have been found to impact residual resistance and medium field Q-slop
- But: no coherent picture

Conclusion (3)

- Cavity quality factor <u>at operating gradient</u> has high impact on cost!
 - Q₀ of 2·10¹⁰ at 1.8 K is realistic for the near future
 - Best performing TTF/FLASH module:

(Courtesy of R.Lange et al. DESY MKS)