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Outline

minimize cost (construction +operational)

!

Reduce cryo-power

Cavity / \ Operating

frequency gradient
choice choice

Operating Cavity
temperature preparation
choice choice

Note: Particular importance for CW SRF linacs, e.g. Project-X, x-ray ERL.
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Intrinsic Q — Power and Cost

« R&D focus during the last years was on (and should have been) on achieving

highest possible fields
« But: High gradients only economically usable if accompanied by high intrinsic quality
factors
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« Current typical Q-values: 1-1010 to 2-1010

=> Cost optimal gradient for ILC-type pulsed operation:~ 35MV/m
=> Cost optimal gradient for cw operation: 15 to 20 MV/m
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Impact of high intrinsic Q

* Improve Q by factor of 2:

= Increase energy by factor of V2 with same linac length and same
cryo power (assuming no quench limitations)

=> Or: Reduce linac length by factor of 2 (double gradient)

Vz‘oz‘al E acc

Ptotal - R
20, 0L

=> Intrinsic Q has high impact on cost and science potential!

cay

=> Future accelerators (TeV lepton collider, FELs, ERLs, cw
Project-X) would greatly benefit from intrinsic Q-values at or
above 2-101°
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Cavity Quality

1010

« Exceptionally high intrinsic Q-values of
5-10'0 to >1-1011 have been achieved in
a few cavities in vertical acceptance
tests (i.e. not in full cryomodules)

9-cell ILC cavity (Courtesy HZB)
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* Huge potential...
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Intrinsic Q — poor reliability

Qo versus Eacc: TTF 9-cell cavities Q, versus Eacc: Cornell 9-cell cavities
3rd Production - BCP Cavities 1E+117

16 cavities with standard treatment

Q01N°;§%%<

Xy k. F1E+101

[ Cavity AC 67 has a cold leak which * _4
H was not located so far.

+
L. Lilje et al. 2K

H The Q vs. E curve’s behaviour is
due to Helium inside the cavity.
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Significant variation in medium field Q-values
Poor repeatability of high Q results

* No systematic understanding
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Complete TTF-cryomodule type il

Meas Qol/Eacc average gradient 10Hz 500/800us
(Courtesy of R.Lange et al. DESY MKS)
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Cavities installed in cryomodules show more modest to much lower intrinsic quality

factors, even at medium fields.
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Q, versus Eacc in the BNL ERL
prototype cryomodule
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Average Q-value for cavities in cryomodules significantly lower than in vertical

acceptance tests

« No exceptionally high Q-values achieved so far (>2.5-10"0)
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Q, versus Eacc in the Cornell ERL
Prototype => Varying degrees of Q-degradation of

1E+11

A Vertical test (typical)

® Cryomodule April 2009
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Q-degradation with time?

10 15 20 25
Eoce MY

cavities in real linac in cryomodules

& Cryomodule, August 2008 | * Potential reasons:

« Q-degradation and field
emission from dust introduction
(beamline HOM absorbers?)

« condensed gases,

« insufficient magnetic shielding
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Cornell University

RF frequency and
Operating
temperature

TTC meeting 19-22 April 2010 FNAL



Dynamic Cavity Losses (1)

« BCS theory: Frequency and 10-65

temperature dependence of surface
resistance at low RF fields (7.: s.c.

transition temperature)

A(0)/ k;T.=1.89
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« Reallive: R=RgcstRpes
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Dynamic Cavity Losses (2)

« Total power dissipated into cavity wall:

R 7
Pdiss=ERs‘£‘H‘ dS=R/Q'G s

* (R/Q)G given by cell shape and number of cells
= minimize surface resistance R,
= operate cavity at temperature such that Rg-s < R,
= R, =R
= For given accelerating field gradient E__.:

Piss - 1 - 1
active cavity length  (R/Q)/length s

S

s 1-€. iIndependent of frequency!

= High frequency preferred in the regime Rg-5 < R,

S
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Cooling Power for Dynamic Losses

(for a given accelerating gradient)

a) 1 nQ residual surface resistance b) 7 nQ residual surface resistance
X 10 | (dream for multi cel!s ?) X 104(optimisti§: for Iarge # of cavities ?)
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= 1.8K. Note: Lower T is unproven and might
cause instability in the cryo-system.
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Choice of Temperature

The lower the better ?

Lowering the temperature seems to be effective
approximately as long as Q = Q(T) follows BCS
and the temperature dependent dynamic loads

dominate (reasonable lower limit 1.5 K)

He-ll cooling might become unstable below 1.8 K
— tests required

Another cold compressor stage is required for
each 0.2 K temperature step to lower
temperatures — investment costs and system

complexity increase
See for example: Talk by B. Petersen, ERL 2005
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Choice of frequency (1)

* Unless extremely small residual surface
resistances become reality in SRF cavities in
the future, higher frequency (e.g 1.3 GHz) SRF
cavities give smaller dynamic cavity losses at
optimized temperature

— Important for multi-GeV cw linacs!

— Additionally: Cavity surface area o 1/f2

=> Higher frequency gives smaller risk of cavity performance
reduction by surface defects, electron field emission by
dust, ...
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Choice of frequency (2)

« Why chose <1 GHz anyway in some cases?
— Transit time factor considerations for <1 linacs

— HOM considerations for very high current linacs
(>~100mA) to reduce beam breakup and HOM heating

— But: Construction cost increases with lower frequency!
— But: Operational cost increases with lower frequency!

— But: Risk of surface contamination increases with
lower frequency.

TTC meeting 19-22 April 2010 FNAL



Conclusion (1)

* For 5 GeV, 100 mA ERL.:

— Fundamental mode frequency of 1.3 GHz and
realistic operating temperature of ~1.8 K
minimize AC cooling power

* Lower frequency would be beneficial if
higher BBU threshold were required

— Can increase BBU threshold 1/f (for samé
number of cells per cavity)

— Note: Other things can have similar / larger
impact on the BBU threshold current

— The chrage per bunch increases when every
bucket is filled, increasing space charge forces.
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Cornell University

Q0 and Optimal Field Gradient
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SRF Linac Cost Estimation

SRF cyomodules Tunnel Cryo-Plant
« # of cavities e Linac * Cryo-loads at various
: length temperatures
« # cells per cavity
» Field gradient
« fill factor \
1 _/ * Operating temperature
o Cost model 5
(main linac
only!)  Note: cost « power%4
RF Power Sources
« Power per cavity
* QL, microphonics
. Note: R&D cost and SRF facility cost are
not included in following example of a
* # of cavities 5GeV ERL !
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Example: Cost dependence on

accelerating field graident for 5GeV
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ERL Main Linac cost distribution

For Eacc =16.2MV/m

relative cost [%]
N w =
o o o

-t
o
T

Tunnel RF power Cryomodules Cryogenic plant

« Costs for cryomodules, cryogenic plant, and
the RF power sources are similar.
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normalized cost

o

o
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1 — construction 107 Cavity Q case 1 30 cryo AC power
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* Q,-value has significant impact on cost (high impact and risk
parameter)

« Construction cost changes only moderately for gradients between

~16 and ~27 MV/m

field gradient [MV/m]

field gradient [MV/m]

« Operating cost/ AC power increases with gradient
« Select gradient at lower end: 16.2 MV/m

= Less risk for same cost!
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Field Emission

Gamma radiation measured at DESY/FLASH -+ Exponential growth in FE
from cavity field emission with gradient

(PULSED CAVITY 0PAT|0N') » Serious problem in cw cavity

IR 11 TETETEETEEET] gperation
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Q% ==H=s ‘,/ &: EpEsde=cE=2 e gradient and RF power to limit

1.0E+11

]
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15 I 20 - 25 e = 16.2 MV/m
Gradient: MV /m

*For ERL : 10uGy/h * 200 (for cw)=2 mGy/h = 0.2 rad/h

*10 years of operation: 100 Gy = 10,000 rad (at 5000h/year)
Same as FLASH/XFEL at ~ 25 MV/m

= Need stronq shielding of electronics in tunnel!

General Appreciation of Radiation Damage to Materials
Semiconductors ]

Electronics ' ‘ ‘ ' '
] 2 4 106 108 10 12
B Destruction 10 10 10 0 10 10
EmOmE Damage Dose (Gy) 08
O No damage B355A248
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Conclusion (2)

« CW cavity operation favors operation at
modest field gradients of 15 to 20 MV/m
= Near cost optimum
=> Reduced operation cost (AC power)

= Reduced risk of field emission and poor cavity
performance

Note: Cavity designs with high surface electric peak
fields might require operating at even lower fields!

=> |Increased reliability
= Simplified cavity preparation (compared to ILC)
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Cornell University

Q, and cavity
preparation
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Residual Resistance

« Several sources are known to increase residual resistance:

« Trapped flux for DC external field = magnetic shielding of Earth’s

magnetic field
R(]) ~ H ext R
n
2 H c2

« Q-disease from hydrides = Reduce H-concentration

 But: Cavities with similar magnetic shielding show Q-values between
1-10"° and 1-10"1!

=> Several other factors must play an important role...
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Most cavities show modest to significant reduction in Q from low to medium
fields (6 -> 25 MV/m)

Proposed models usually combine
- Field depended surface resistance

Surface Resistance: R4 (B) = Ry
* Thermal feedback Rg.5(7T)

But: medium field Q-slope strength varies a lot (factor 2 to 5)

B\?>
14+~ = o(B*

C

14

Y 12 From Ciovati: f
b “High QatLow |
and Medium Field” _

- I o N e =

SNS 0.61 SNS 0.81  CEBAF SL21 CEBAF FEL3 CEBAF NL11 TESLA

gamma

o N B~ O ©

But: no good understanding of physics and best surface treatment to
minimize Q-slope
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Q, versus Eacc: 9-cell BCP cavities
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H The Q vs. E curve's behaviour is
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Smaller medium field Q-slope in BCP cavities vs. EP cavities?

Which surface treatment gives the highest Q-values realizably?
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G. Ciovati-J. Appl. Phys. 96, p. 1591 (2004)

* Low (~120 C) and high
temperature (800C to 1400C) heat
treatments have been found to
impact residual resistance and
medium field Q-slop

* But: no coherent picture
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Conclusion (3)

» Cavity quality factor at operating gradient has
high impact on cost!

— Q, of 2:101% at 1.8 K is realistic for the near future
» Best performing TTF/FLASH module:

Module 6 CMTB
Meas Qo/Eacc average gradient 10Hz 500/800us
Status:13-Mar-07 Esch/Kos/Lil/Lan
MKS
3.0E+10
r (Courtesy of
2.5E+10 R.Lange et al.
Qo 2.0E+10 $
T W 8K
1.5E+10 o
s TS
20K
1.0E+10
0 5 10 15 20 25 30 35
Eacc [MV/m]
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