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Goals

Machine learning techniques are used for a variety of overlapping purposes in
high energy physics. They complement and/or supplement other techniques,
and each use case entails trade-offs. LHCb is using ML for:

better characterizations of data;
characterize/identify events most likely to contain interesting
events in the High Level trigger (a two-stage software process);
discriminate between well-reconstructed tracks and ‘ghost’
tracks in the reconstruction software;
discriminate between particle species (and ghosts) using
information from a variety of detectors (PID);

faster characterizations of data;
characterize/identify events most likely to contain interesting
events in the High Level trigger (a two-stage software process);

better use of computing resources;
optimize use of storage capacity;

better use of human resources
simplfy HLT software;
reduce biases during analysis to minimize effort related to
understanding potential systematic biases.
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Overview of the LHCb Trigger
see LHCb-TALK-2016-362 and LHCb-PROC-2017-017
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Moved to real time reconstruction, alignment
and calibration set-up in Run II

 Need same reconstruction online and offline
Track reconstruction in two stages

Fast stage (HLT1) for long tracks with
pT > 500 MeV and tighter track quality
requirements
Full stage (HLT2) achieves offline efficiency
and precision (details in backup)

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb 2015 Trigger Diagram
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Use of MVA in the Trigger
see Machine Learning in the LHCb trigger system, V Gligorov, Openlab meeting, CERN
27-04-2017

9

Where do we use ML/MVA today?
Within trigger, only in HLT. Some attempt made at using neural nets in 
hardware calorimeter trigger but no significant gain achieved, abandoned.

Reconstruction : 

— Track reconstruction                              DNN & BDT (in places)
— Fake track identification                                    NEURAL NET
— Particle identification                              NN/BDT (in places)

Selection : 

— First level inclusive charm/beauty triggers                 FISHER, BDT
— Second level inclusive beauty triggers                              BDT
— Second level inclusive D* triggers                                   BDT
— Second level inclusive radiative decay triggers                     BDT

Incidentally : these BDT triggers account for about 66% of the first-level 
trigger rate and around 30-40% of second-level trigger rate. 

About 60% of Run I papers produced using BDT based trigger.
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Use of Bonsai Boosted Decision Tree MVAs in the Trigger
see Machine Learning in the LHCb trigger system, V Gligorov, Openlab meeting, CERN
27-04-2017 & V. Gligorov and M. Williams, JINST 8 (2013) P02013

14

Implementation details
BDT weight files versioned separately to the code,  
which accesses the appropriate version at run-time. 

Takes O(50 MB) loaded into memory as a 1D lookup 

table, but this goes in the shared memory so less of an 

impact when multithreading 

Framework for developing/training/deploying new BDT 

based triggers minimizes effort for analysts  
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Machine Learning in Tracking
see LHCb-TALK-2016-362 and LHCb-PROC-2017-017
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MC performance ν =1.6
2016 w.r.t. 2015 w/ RL w/o RL
timing HLT1 ± 0 %
timing HLT2 + 4 % − 38 %
fake rate − 27 % − 35 %
fake rate HLT1 − 15 %
ε long + 0.5 % + 0.1 %
ε long from B + 0.2 % − 0.2 %
εHLT1 long from B p >3,pT >0.5 GeV + 0.1 %

NNs trained for background rejection at given (97 to 99 %) efficiency
Hidden Layer (HL) architecture most important hyperparameter

 NN in recovery loop (RL): 9 Input nodes, 16,10 HL nodes
 NN after stereo fit: 16 Input nodes, 17,9,5 HL nodes

NN responses & other parameters tuned with MC and minimum bias data

Results:
Increased efficiency
Reduced fake rate considerably
Decreased speed compensated in later
stages due to fake track rejection
NNs only contribute 2 % (HLT2),
0.5 % (HLT1) to timing
of forward tracking algorithm

Mike Sokoloff University of Cincinnati

Use of advanced ML techniques in operations and data analysis at LHCb 5 / 19



Use of MVA in the Trigger
see De Cian et al., LHCb-PUB-2017-011 (in preparation)

ML for fake track probability

21
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Fake track probability based on TMVA NN (CE estimator), most important features are hit 
multiplicities and partial chi2 information in different tracking subdetectors. Main 
timing cost network evaluation, custom activation function for speed. Extensive use of 
code profiling and autovectorization to optimize the .C output of TMVA for speed.

De Cian et al. 
LHCb-PUB-2017-011
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Use of MVA in the Trigger
LHCb-PAPER-2015-041

Real time signals in 2015

Trigger level signal purities and resolutions for charged particles identical to the 
best possible offline ones. Published first papers 2 weeks after data taken! 27

conclusion

conclusion

first experiment of this scale to perform alignment and
calibration online
works extremely well; get beautiful peaks out of the trigger
(TURBO stream)
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D0 → K−π+ D+ → K−π+π+ D+
s → K+K−π+

(for details, see talk by Alex Pearce on Monday)

tremendous improvements in track reconstruction (time)
offline track reconstruction now also used in HLT

M. Schiller (CERN) LHCb prompt calib. & det. performance September 1st, 2015 20 / 20
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Machine Learning for Particle Identification (PID)
see see talk by Tatiana Likhomanenko at IML meeting, 18 January 2017

Challenge

3

Problem:  identify charged particle associated with a track  
 (multiclass classification problem) 

particle types: Ghost, Electron, Muon, Pion, Kaon, Proton. 

LHCb detector provides diverse plentiful information, 
collected by subdetectors: CALO, RICH, Muon and Track 
observables 

this information can be efficiently combined using ML 

Monte Carlo simulated samples for various decays are 
available (6 millions tracks in training and 6 millions in test)
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Area Under the Curve (AUC) as a Metric
see see talk by Tatiana Likhomanenko at IML meeting, 18 January 2017

Total Model Quality

6

There are 6 classes, that is why OvR approaches 
is fine. 

In analyses, we are mostly interested in selecting 
one type (e.g., muon). 

We use one-vs-rest ROC curves and area 
under the curves (AUC) to measure quality of 
the classification (also for multiclass 
classification algorithms).

error correction code не нужен - используется для большого числа классов 

B Signal efficiencies and background rejection derived from real data.

Signal efficiencies and background rejection rates derived from real data.
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Comparing performances of various NNs and BDTs
see see talk by Tatiana Likhomanenko at IML meeting, 18 January 2017

method	 ghost	 electron	 muon	 pion	 kaon	 proton	

Baseline	NN	
(one	v	rest)		

0.9484	 0.9854	 0.9844	 0.9345	 0.9147	 0.9178	

Keras	DL	
(mul>class)	

0.9632	 0.9914	 0.9925	 0.9587	 0.9319	 0.9320	

Stacked	NN	 0.9624	 0.9911	 0.9924	 0.9580	 0.9316	 0.9314	

Special	NN	 0.9622	 0.9910	 0.9923	 0.9573	 0.9309	 0.9307	

XGBoost	
(grad	boosted)	

0.9609	 0.9908	 0.9922	 0.9568	 0.9303	 0.9302	

Special	BDT	
(add	ln	combs)	

0.9636	 0.9913	 0.9926	 0.9576	 0.9309	 0.9310	

Flat	in	p	+	pT	+	
η	+	nTracks	

0.9600	 0.9874	 0.9884	 0.9503	 0.9130	 0.9129	

•  Mul4class	classifica4on	works	effec4vely	for	PID	
•  Modern	NN	technologies,	especially	DL,	improve	PID	performance	
•  BDTs	and	NNs	have	similar	reach	
•  Uniform	boos4ng		(flatness)	provides	slightly	lower	discrimina4ng	power,	

but	also	provides	beHer	control	of	biases	and	systema4c	uncertain4es.		
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Boosting to Uniformity
For concepts, see arXiv:1305.7248 [nucl-ex] and arXiv:1410.4140 [hep-ex] and for code
see the hep ml and Yandex repositories.

Uniform gradient boosting trades off some optimization performance for
relatively uniform response. This can simplify analyses, control potential biases,
and reduce systematic uncertainties.
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Figure: Average of uGB response in different intervals of mjj for W+bb
(black) and tt (green). The vertical error bars represent the standard error of
the uGB mean in each interval. From Phys. Lett. B 767 (2017) 110.
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Changing gears: Kernel density estimation (KDE) basics

Let xi be the data points from which we have to estimate the
PDF. Kernel density estimator is

PKDE(x) =
∑
i

K (x − xi )

Here K (x) is a kernel. Can use various forms. Here, consider a
parabola:

K (x) = 1− (x/h)2

Optimal in some sense (although the others, such as Gaussian, are
almost as good).
Note the resulting PKDE(x) in i →∞ limit is rather a convolution
of the true PDF with the kernel K (x). Thus, structures with the
width ≤ kernel width are smeared.
Kernel width h (bandwidth) needs to be optimised to reach balance
between bias (wide kernels) and stat. fluctuations (narrow kernels).
For HEP-related discussion, see

[K. Cranmer, Comp. Phys. Comm. 136 (2001) 198-207]
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KDE implementations

RooFit: RooKeysPDF (1-dim), RooNDKeysPDF (N-dim).
Gaussian kernel
Both fixed and adaptive kernels
Boundary correction using data reflection

scikit-learn: sklearn.neighbors.KernelDensity.
Choice of various kernels
Only fixed kernel
Different metrics
Optimisation using KD-tree ⇒ faster lookup

Meerkat implementation (by Anton Poluektov): see below
Attempt to solve problems related to boundary effects and
curse of dimensionality.
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KDE: boundary effects

Ptrue(x) = 1+3x2+10e−x2/0.12

The usual problem with KDE is bound-
ary effects.
Methods to correct for this:

Data reflection.

Kernel modification near
boundary.

Normally work with simple boundaries
(1D, linear). Not easy to apply to e.g.
conventional Dalitz plots.
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KDE: correcting for boundary effect

Ptrue(x) = 1+3x2+10e−x2/0.12

Simple correction: divide result of KDE
by the convolution of kernel with flat
density:

Pcorr(x) =


N∑
i=1

K(x−xi )

(U⊗K)(x) for x ∈ X ,

0 otherwise.

U(x) =

{
1 for x ∈ X ,
0 otherwise.
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KDE: correcting for boundary effect

Ptrue(x) = 1+3x2+10e−x2/0.12

Pappr = 1 + 10e−x2/0.12

Suppose we approximately know
how the PDF behaves at the
boundaries. A more sophisticated
correction:

Pcorr(x) =

N∑
i=1

K (x − xi )

(Pappr ⊗ K )(x)
×Pappr(x).

replaces KDE by an approxima-
tion PDF at boundaries and in re-
gions with narrow structures.

For details and a discussion of how to extend to multiple
dimensions, see [Anton Poluektov, JINST 10 P02011 (2015)]
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Relative KDE: multidimensional case

Multiple dimensions typically need wide
kernels (or very large samples). As an
example of how approximation PDFs
can help:

Efficiency shape in multiple dimensions:

Approximation PDF from
high-statistics fast MC sample
(e.g. generator-level MC with
simple kinematic cuts) and
narrow kernel.

Relative KDE based on full Geant
simulation and wider kernel.
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This is the relative selection efficiency
over the Λ0

b → D0pπ− phase space
described in arXiv:1701.07873
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Meerkat library

[http://meerkat.hepforge.org]

The above procedure is implemented in the Meerkat library
(Multidimensional Efficiency Estimation using Relative Kernel
Approximation Technique). Obviously not limited to efficiency
estimation. Direct usage of relative KDE formulas is slow because
convolution should be done in every point x . For practical
applications, use binned approach with multilinear interpolation:

Pinterp(x) =

Bin

[
N∑
i=1

K (x − xi )

]
Bin [(Pappr ⊗ K )(x)]

× Pappr(x).

Time to estimate the PDF is linear with the size of the sample,
and memory is constant (no need to store the whole data sample
in memory). Very large data samples can be used practically (A.P.
has used a 108 event sample for a 5D distribution).
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Summary
some selected uses of ML in LHCb

Machine Learning has been used extensively in LHCb since Run 1. It provides
many benefits.

our reconstruction/trigger software executes much more quickly (tracking
and BBDT triggers are examples).

our reconstruction/trigger software characterizes data more effectively,
allowing us to do more physics with limited bandwidth out of the pit
(BBDT and PID are examples).

Using BDTs, NNs, DL, and KDEs allows us to do better physics analyses

No one approach addresses all problems most effectively.

we continue to develop new alogrithms and tools;

we compare performances with real data.

Thank You
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