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USC

PWFA experiments with collider beams

Two important PWFA issues related to PWFA-LC:

1) plasma/gas behavior with large power deposition from
the drive beam (P. Muggli)

2) Plasma ion motion due to very dense, low emittance
high charge beams (R. Gholizadeh)
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USC pLASMA WAKEFIELD ACCELERATOR* 101

¢ Two-beam, co-linear, plasma-based accelerator

Focusing (E))
Defocusing Accele ratl Decelerating (E,)

electron
beams

¢ Deceleration, acceleration, focusing by plasma
¢ Accelerating field/gradient scales as N/o,?

¢ N=2x10"%: ,=600 pym, n,=2x10"* cm=, E__.~100 MV/m, B,/r=6 kT/m
o,= 20 um, n,=2x10"" cm=3, E_.~ 10 GV/m, B,/r=6 MT/m

¢ Conventional accelerators: E,__.<150 MV/m, B /r<2 kT/m

¢ High-gradient, high-efficiency energy transformer
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USC PREVIOUS RESULTS
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m) Energy doubling of e- over L =85 cm, 2.7x10'7 cm3 plasma
m) Unloaded gradient ~52 GV/m (=150 pC accel.)

P. Muagli, ICOPS 08, 06/17/08

m) Tremendous progress with PWFA
m) Acceleration, transverse dynamics, positrons, etc.

m) “Single bunch” experiments (1Hz)
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USC PWFA-LC Concept (an example)
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PWFA cells PWFA cells
FACET Program will demonstrate most of a single stage

main beam DR e+
e+ injector

main beam
DR e- .
¢- 1njector

¢ FACET"@SLAC: single, 1m-long, +25 GeV stage, e and e*
¢ 1-10 Hz rep. rate (“single shot”)

e e : :
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USC

High average drive beam power, finite transfer efficiency

Questions:

What happens to the plasma and gas?

Does the plasma recombines slowly because of high T_?

Does heat deposition create shock wave in the plasma and gas?

Does the gas expand radially and does it have a lower
density for the next bunch?

Can a favorable equilibrium be reached over the bunch train?

How to reach the equilibrium?
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USC Assumed parameters: ‘ ‘

* L-band RF photoinjector source \/

*40 MeV low energy injector energy; up to 1.5 GeV high energy beam
* Capable of ILC-li

* 3.2 nC/bunch; 3 MHz bunch rate; 1 ms long bunch train; 300 mm RMS bunch lenm >
eration L
* normalized transverse emittance ~> tm

* Higher bunch rates for Project X cryomodule testing possible

/Murrents 10 — 15 KA possible
N~ h-iingle bunch intensity over 10 nC possible

R — —

The beam can be compressed and focused to (20x20x20)um?3
(similar to SLAC beam at FFTB!)

Largest energy loss is 1.5GeV in 10GeV/m plasma with n,=10""cm-3

Half the beam energy (2.5J) is deposited in a gas/plasma
1.5GeV/10GeV/m=15¢cm long and c/w, (17um) in radius (0.14mm?)

AT=Q/mC=4272°C for liquid water
This repeats 3000 times, every 333ns, at 5Hz
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USC Proposed experiments:

1) Measure the energy spectrum of successive bunches in the
train using a gated camera and prompt radiation

(Cherenhov?)

2) Measure focusing ...
Plasma Gated Camera
n~1016 cm3

- [ [~15cm _Quadrupoles Bending Magnet .\‘ X-Ray
AN

| OO0 J Diagnostic
ot N Voo ” . > 1lag
N=2x10 / : | N
0,=20 ym >})ptical Transiton ~~ -~~~ ~-°-°T7TTTT7T°7

E=1.5 GeV Radiators Radiator
At=333 ns |<— Spectrometer —.|

Sample gas/plasma state at bunches
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USC

3) Interferometry along the plasma

Interference

| aser Pulse \ IVariabIe Delay Patlern

e Beam

Plasma

Delay laser pulse wrt e- beam for evolution at <333ns scale
after each bunch

Phase shift due to plasma and gas density variations
(recombination, thermal expansions, etc.)
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USC

Use Li plasma source

Field ionization for plasma creation

Standard diagnostics for beam size and shape: OTR

Standard diagnostics for beam energy: imaging spectrometer
with Cherenkov radiator

Interferometry requires laser synchronized with e- beam, ns
time scale
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Measurement of lon Motion Using
Frequency-Domain Holography
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] qu Frequency-Domam Holography (FDH)
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Pump pulse (800 nm)
1J,30fs

1 . Reference Pulse

400 nm
/13 parabola

* Phase Shift Ag is measured by s gas
comparing Probe phase with ~ ===% & eﬁ% "
Reference phase

* Phase Shift A@ depends on , e Beam spiter
the index of refraction ( i i

* Probe pulse is chirped to extract UW;‘:E

probes Second-harmonic-
generation crystals

Chirped Chirped
reference probe

Probe line

the information on longitudinal
position

*The entire 3D image can be made
in a single shot by using a chirped
wave plane.

e w1 - Matlis.et al., “Snapshots of Laser Wakefields”, Nature Physics 2, 749 - 753 (2006)



USC Calculations
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Proposed Experiment:

* Inside the bubble, w,.=0
 Plasma Density= 107 cm™ —p A ~ 11/2
 Laser Wavelength A=500nm
 Capillary Length L=1cm

* Jon Mass=1836 amu (H) (in order to maximize ion motion)
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USC Experimental Expertise on Plasma Sources and FDH

‘Brookhaven:
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 Collaboration with Prof. Downer’s group in near future

* Experience with FDH
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USC

Take advantage of the unique collider beam format at the ILC Test and AARD Facility at the
New Muon Lab (NML) for PWFA experiments

Address PWFA collider issues:

1) Effect of power deposition in the plasma on the acceleration and focusing process

2) Existence of ion motion

Goals: - complement experiments at SLAC-FACET and BNL-ATF
- use experience acquired at SLAC-FACET and BNL-ATF: plasma source,
diagnostics, ...
- devise solutions to mitigate these potentially negative effects
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