EDMs of Light Nuclei in Chiral Effective Theory

Emanuele Mereghetti

Winter Workshop on Electric Dipole Moments, February 14th, 2012

in collaboration with: U. van Kolck, J. de Vries, R. Timmermans, W. Hockings, C. Maekawa, C. P. Liu, I. Stetcu, R. Higa.

Lawrence Berkeley National Laboratory

Motivations

Electric Dipole Moments (EDMs) are ideal place to look for new physics

- signal of T and P violation
- signal T violation in the flavor diagonal sector
- · insensitive to the CKM phase

Standard Model:

 $d_n \sim 10^{-19} e \,\mathrm{fm}$

for review: M. Pospelov and A. Ritz, '05

Current bounds:

• neutron $|d_n| < 2.9 \times 10^{-13} e \,\mathrm{fm}$

UltraCold Neutron Experiment @ ILL C. A. Baker et al., '06

• proton $|d_p| < 7.9 \times 10^{-12} e \, \text{fm}$

¹⁹⁹Hg EDM @ Univ. of Washington

W. C. Griffith et al., '09

▲□▶▲□▶▲□▶▲□▶ □ のQで

Large window for new physics and intense experimental activity!

Motivations

· EDM of charged particles in storage ring experiments

from H. Ströher, talk at "EDM Searches at Storage Rings". ECT*, Trento, '12.

• accuracy goal: $d_{p, d, \text{He}} \sim 10^{-16} e \text{ fm.}$

Motivations

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Why EDMs of light nuclei?

- complementary to nucleon EDM
 - sensitive to different low-energy $\not P T$ couplings $(\bar{g}_0, \bar{g}_1, \bar{d}_1, \dots)$
 - clues on properties of ₱T sources at high energy SU(2), isospin
 - can tell QCD $\bar{\theta}$ term apart from new physics?
- χ PT and Nuclear EFT
- Tools for precise and controlled calculations (in terms of EFT couplings)
- combination of EFT & lattice QCD
 - first principle calculation of d_n , d_d and d_{He} , for $\overline{\theta}$ and dimension-six operators

The QCD $\bar{\theta}$ term.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Dimension 4

 $\bar{\theta}$ term intimately related to the quark masses

• unphysical if $m_{u,d} = 0$

M_{QCD}

 M_{W}

The QCD $\bar{\theta}$ term.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

chiral invariant

 $+\frac{d_{W}}{6}f^{abc}\epsilon^{\mu\nu\alpha\beta}G^{a}_{\alpha\beta}G^{b}_{\mu\rho}G^{c\,\rho}_{\nu}$ $+\frac{\mathrm{Im}\,\Xi_{(1,8)}}{4}\epsilon^{3ij}\bar{q}\tau^{i}\gamma^{\mu}q\,\bar{q}\tau^{j}\gamma_{\mu}\gamma_{5}q+\frac{\mathrm{Im}\Sigma_{(1,8)}}{4}\left(\bar{q}q\,\bar{q}i\gamma_{5}q-\bar{q}\boldsymbol{\tau}q\,\cdot\bar{q}\boldsymbol{\tau}i\gamma_{5}q\right)$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

only four four-quark operators are genuine dimension-six

- J. Ng and S. Tulin, '11.
- $\Xi_{1,8}$ break $SU_L(2)$ isospin differently from qCEDM

Dimension 6

$$\mathcal{L}_{6} = -\frac{1}{2} \bar{q} \left(d_{0} + d_{3}\tau_{3} \right) i \sigma^{\mu\nu} \gamma_{5} q F_{\mu\nu} - \frac{1}{2} \bar{q} \left(\tilde{d}_{0} + \tilde{d}_{3}\tau_{3} \right) i \sigma^{\mu\nu} \gamma_{5} \lambda^{a} q G^{a}_{\mu\nu}$$

$$+ \frac{d_{W}}{6} f^{abc} \epsilon^{\mu\nu\alpha\beta} G^{a}_{\alpha\beta} G^{b}_{\mu\rho} G^{c\,\rho}_{\nu}$$

$$+ \frac{\mathrm{Im} \Xi_{(1,8)}}{4} \epsilon^{3ij} \bar{q} \tau^{i} \gamma^{\mu} q \bar{q} \tau^{j} \gamma_{\mu} \gamma_{5} q + \frac{\mathrm{Im} \Sigma_{(1,8)}}{4} \left(\bar{q} q \bar{q} i \gamma_{5} q - \bar{q} \boldsymbol{\tau} q \cdot \bar{q} \boldsymbol{\tau} i \gamma_{5} q \right)$$

• Coefficients (at $\mu \sim 1 \text{ GeV}$)

$$d_{W} \equiv 4\pi \frac{w}{M_{f}^{2}}, \qquad d_{0,3} \equiv e \delta_{0,3} \frac{\bar{m}}{M_{f}^{2}}, \qquad \tilde{d}_{0,3} \equiv 4\pi \tilde{\delta}_{0,3} \frac{\bar{m}}{M_{f}^{2}},$$
$$\operatorname{Im} \Sigma_{1,8} \equiv (4\pi)^{2} \frac{\sigma_{1,8}}{M_{f}^{2}}, \qquad \operatorname{Im} \Xi_{1,8} \equiv (4\pi)^{2} \frac{\xi_{1,8}}{M_{f}^{2}}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

· depend on details of BSM TV mechanism

· contain info on QCD running & heavy SM particles

m_π

M

 $M_{\rm W}$

Chiral Perturbation Theory.

- pion couples weakly at scales $Q \ll M_{QCD} \sim 2\pi F_{\pi}$
- \mathcal{L}_{EFT} contains all operators allowed by QCD symmetries
- \mathcal{L}_{EFT} organized as expansion in powers of $Q, m_{\pi}/M_{QCD}$

$$\mathcal{L}_{ ext{EFT}}[oldsymbol{\pi},N] = \sum_{f,\ \Delta} \mathcal{L}_{f}^{(\Delta)}[oldsymbol{\pi},N]$$

$$\Delta = d + 2m + f/2 - 2 \ge 1$$

 $A \leq 1$: perturbative expansion of the amplitudes

$$\begin{aligned} \mathcal{T} &\sim & \left(\frac{\mathcal{Q}}{M_{QCD}}\right)^{\nu} \\ \nu &= & 2L + \sum_{i} \Delta_{i}, \quad M_{QCD} = 2\pi F_{\pi} \end{aligned}$$

- f = 0, 2: # of nucleon legs
- d: # of derivatives or photon fields
- m: # of quark mass insertions

Effective Lagrangian for $\not PT$ interactions.

$$\mathcal{L}_{H} = \mathcal{L}_{\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{\gamma N} + \mathcal{L}_{NN} + \dots$$

- remove pion tadpoles order by order in χ PT (vacuum alignment)
- at least 3π interactions, usually suppressed for EDMs

$$\mathcal{L}_{\pi} = -\bar{\Delta}\,\pi_3 \frac{\pi^2}{F_{\pi}} + \dots$$

· non-derivative pion-nucleon couplings

$$\mathcal{L}_{\pi N} = -\frac{\bar{g}_0}{F_{\pi}}\bar{N}\boldsymbol{\pi}\cdot\boldsymbol{\tau}N - \frac{\bar{g}_1}{F_{\pi}}\pi_3\bar{N}N + \dots$$

• short-range EDM operators

$$\mathcal{L}_{\gamma N} = -2\bar{N}S^{\mu}v^{\nu}\left(\bar{d}_{0}+\bar{d}_{1}\tau_{3}\right)NF_{\mu\nu}+\ldots$$

• nucleon-nucleon interactions

$$\mathcal{L}_{NN} = \bar{C}_1 \bar{N} S^{\mu} N \,\partial_{\mu} \left(\bar{N} N \right) + \bar{C}_2 \bar{N} S^{\mu} \boldsymbol{\tau} N \cdot \partial_{\mu} \left(\bar{N} \boldsymbol{\tau} N \right) + \dots$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

TV Chiral Lagrangian. Theta Term

	\overline{g}_0	\overline{g}_1	$\overline{d}_{0,1} imes Q^2$	$\bar{C}_{1,2} imes F_{\pi}^2 Q^2$	
$\bar{ heta} imes rac{m_{\pi}^2}{M_{QCD}}$	1	$\varepsilon rac{m_\pi^2}{M_{QCD}^2}$	$\frac{Q^2}{M_{QCD}^2}$	$\frac{Q^2}{M_{QCD}^2}$	NDA

Theta Term violates chiral symmetry & conserves isospin

- non-derivative coupling \bar{g}_0 appears @ LO
- needs extra insertion of $\bar{m}\varepsilon$ to generate \bar{g}_1
- higher dimensionality of $N\gamma$ and NN operators costs powers of Q/M_{QCD}

TV Chiral Lagrangian. Theta Term

		\overline{g}_0	\overline{g}_1	$ar{d}_{0,1} imes Q^2$	$\bar{C}_{1,2} \times F_{\pi}^2 Q^2$	
$\bar{\theta} \times$	$\frac{m_{\pi}^2}{M_{QCD}}$	1	0.01	$\frac{Q^2}{M_{QCD}^2}$	$\frac{Q^2}{M_{QCD}^2}$	NDA
$\bar{\theta}$ ×	$\frac{m_{\pi}^2}{M_{QCD}}$	0.11	~ 0.03			isospin

Theta Term violates chiral symmetry & conserves isospin

- non-derivative coupling \overline{g}_0 appears @ LO
- needs extra insertion of $\bar{m}\varepsilon$ to generate \bar{g}_1
- higher dimensionality of $N\gamma$ and NN operators costs powers of Q/M_{QCD}

Beyond NDA? $\bar{q}i\gamma_5 q \xrightarrow{SU_A(2)} \bar{q}\tau_3 q$

• \bar{g}_0 related to the hadronic contribution to $m_n - m_p$, δm_N

$$\bar{g}_0 = \delta m_N \frac{1 - \varepsilon^2}{2\varepsilon} \bar{\theta}, \qquad \frac{\delta m_N}{2\varepsilon} = 2.8 \pm 0.7 \pm 0.6 \,\mathrm{MeV}$$

R. Crewther et al, '79; S. Beane et al, '07

▲□▶▲□▶▲□▶▲□▶ □ のQで

somewhat smaller than NDA.

• better lattice estimate of δm_N coming soon.

A. Walker-Loud et al, in preparation

TV Chiral Lagrangian. Theta Term

		\overline{g}_0	\overline{g}_1	$ar{d}_{0,1} imes Q^2$	$\bar{C}_{1,2} \times F_{\pi}^2 Q^2$	
$\bar{\theta} \times$	$\frac{m_{\pi}^2}{M_{QCD}}$	1	0.01	$\frac{Q^2}{M_{QCD}^2}$	$\frac{Q^2}{M_{QCD}^2}$	NDA
$\bar{\theta}$ ×	$\frac{m_{\pi}^2}{M_{QCD}}$	0.11	~ 0.03			isospin

Theta Term violates chiral symmetry & conserves isospin

- non-derivative coupling \overline{g}_0 appears @ LO
- needs extra insertion of $\bar{m}\varepsilon$ to generate \bar{g}_1
- higher dimensionality of $N\gamma$ and NN operators costs powers of Q/M_{QCD}

Beyond NDA?

 $\bar{q}i\gamma_5 q \xrightarrow{SU_A(2)} \bar{q}\tau_3 q$

• \bar{g}_1 in principle fixed by isospin breaking observables in practice estimated w. assumptions,

e.g. resonance saturation

Lebedev et al, '04; J. Bsaisou, et al., '12.

no constraints on d
 ⁻
 _{0,1}

・ロト・日本・日本・日本・日本・日本

	\bar{g}_0	\overline{g}_1	$\bar{\Delta}/Q$	$ar{d}_{0,1} imes Q^2$	$\bar{C}_{1,2} imes F_{\pi}^2 Q^2$
$ ilde{\delta}_0 imes rac{m_\pi^2 M_{QCD}}{M_f^2}$	1	$\varepsilon rac{m_\pi^2}{M_{QCD}^2}$	$\frac{Q}{M_{QCD}}$	$rac{Q^2}{M_{QCD}^2}$	$rac{Q^2}{M_{QCD}^2}$
$ ilde{\delta}_3 imes rac{m_\pi^2 M_{QCD}}{M_T^2}$	ε	1	$\frac{Q}{M_{QCD}}$	$\frac{Q^2}{M_{QCD}^2}$	$\varepsilon \frac{Q^2}{M_{QCD}^2}$
$(\xi_1,\xi_8) imes rac{M_{QCD}^3}{M_f^2}$	ε	1	$\frac{M_{QCD}}{Q}$	$\frac{Q^2}{M_{QCD}^2}$	$arepsilon rac{Q^2}{M_{QCD}^2}$

• $ilde{\delta}_0$ generates same operators as $ar{ heta}$

<□> <圖> < E> < E> E のQ@

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	\bar{g}_0	\overline{g}_1	$\bar{\Delta}/Q$	$ar{d}_{0,1} imes Q^2$	$\bar{C}_{1,2} imes F_{\pi}^2 Q^2$
$ ilde{\delta}_0 imes rac{m_\pi^2 M_{QCD}}{M_f^2}$	1	$\varepsilon rac{m_\pi^2}{M_{QCD}^2}$	$\frac{Q}{M_{QCD}}$	$rac{Q^2}{M_{QCD}^2}$	$rac{Q^2}{M_{QCD}^2}$
$ ilde{\delta}_3 imes rac{m_\pi^2 M_{QCD}}{M_f^2}$	ε	1	$\frac{Q}{M_{QCD}}$	$\frac{Q^2}{M_{QCD}^2}$	$arepsilon rac{Q^2}{M_{QCD}^2}$
$(\xi_1,\xi_8) imes rac{M_{QCD}^3}{M_f^2}$	ε	1	$\frac{M_{QCD}}{Q}$	$\frac{Q^2}{M_{QCD}^2}$	$arepsilon rac{Q^2}{M_{QCD}^2}$

• $\tilde{\delta}_0$ generates same operators as $\bar{\theta}$

Isospin-breaking sources $\tilde{\delta}_3$ and $\xi_{1,8}$

- very similar couplings
- \bar{g}_1 already in LO
- · contribute to isoscalar couplings via vacuum alignment

	\bar{g}_0	\overline{g}_1	$\bar{\Delta}/Q$	$ar{d}_{0,1} imes Q^2$	$\bar{C}_{1,2} imes F_{\pi}^2 Q^2$
$ ilde{\delta}_0 imes rac{m_\pi^2 M_{QCD}}{M_f^2}$	1	$\varepsilon rac{m_\pi^2}{M_{QCD}^2}$	$\frac{Q}{M_{QCD}}$	$rac{Q^2}{M_{QCD}^2}$	$rac{Q^2}{M_{QCD}^2}$
$ ilde{\delta}_3 imes rac{m_\pi^2 M_{QCD}}{M_f^2}$	ε	1	$\frac{Q}{M_{QCD}}$	$\frac{Q^2}{M_{QCD}^2}$	$arepsilon rac{Q^2}{M_{QCD}^2}$
$(\xi_1,\xi_8) imes rac{M_{QCD}^3}{M_f^2}$	ε	1	$\frac{M_{QCD}}{Q}$	$\frac{Q^2}{M_{QCD}^2}$	$arepsilon rac{Q^2}{M_{QCD}^2}$

• $\tilde{\delta}_0$ generates same operators as $\bar{\theta}$

Isospin-breaking sources $\tilde{\delta}_3$ and $\xi_{1,8}$

- very similar couplings
- \bar{g}_1 already in LO
- · contribute to isoscalar couplings via vacuum alignment
- for $\xi_{1,8}$ 3π coupling is important
- generates LO three-body force

▲□▶▲□▶▲□▶▲□▶ □ のQで

	\bar{g}_0	\overline{g}_1	$\bar{\Delta}/Q$	$ar{d}_{0,1} imes Q^2$	$\bar{C}_{1,2} \times F_{\pi}^2 Q^2$
$ ilde{\delta}_0 imes rac{m_\pi^2 M_{QCD}}{M_f^2}$	1	$\varepsilon \frac{m_\pi^2}{M_{QCD}^2}$	$\frac{Q}{M_{QCD}}$	$rac{Q^2}{M_{QCD}^2}$	$\frac{Q^2}{M_{QCD}^2}$
$ ilde{\delta}_3 imes rac{m_\pi^2 M_{QCD}}{M_T^2}$	ε	1	$\frac{Q}{M_{QCD}}$	$\frac{Q^2}{M_{QCD}^2}$	$arepsilon rac{Q^2}{M_{QCD}^2}$
$(\xi_1,\xi_8) imes rac{M_{QCD}^3}{M_f^2}$	ε	1	$\frac{M_{QCD}}{Q}$	$\frac{Q^2}{M_{QCD}^2}$	$arepsilon rac{Q^2}{M_{QCD}^2}$

Beyond NDA?
$$\bar{q}i\sigma^{\mu\nu}\gamma^5(\tau_3)q \xrightarrow{SU_A(2)} \bar{q}\sigma^{\mu\nu}\tau_3(1)q$$

• \overline{g}_0 and \overline{g}_1 related to corrections to m_{π} , m_N and δm_N from qCMDM e.g.

$$\bar{g}_1 = -2\left(\Delta_6 m_N - \Delta m_N \frac{\Delta_6 m_\pi^2}{m_\pi^2}\right) \frac{\tilde{d}_3}{\tilde{c}_0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

- $\Delta_6 m_{\pi}^2$, $\Delta_6 m_N$ and $\delta_6 m_N$ accessible on the lattice? (w/o CP violation)
- no chiral symmetry constraint on $\overline{d}_{0,1}$

TV Chiral Lagrangian. gCEDM, $\Sigma_{1,8}$ & qEDM

	\bar{g}_0	\overline{g}_1	$\bar{d}_{0,1} imes Q^2$	$\bar{C}_{1,2} imes F_{\pi}^2 Q^2$
$(w, \sigma_1, \sigma_8) \times \frac{M_{QCD}}{M_T^2}$	m_{π}^2	$m_\pi^2 \varepsilon$	Q^2	Q^2
$\delta_{0,3} imes rac{m_\pi^2 M_{QCD}}{M_f^2}$	$\frac{\alpha_{\rm em}}{4\pi}$	$\frac{\alpha_{\rm em}}{4\pi}$	$\frac{Q^2}{M_{QCD}^2}$	$\frac{\alpha_{\rm em}}{4\pi} \frac{Q^2}{M_{QCD}^2}$

gCEDM, $\Sigma_{1,8}$ respect chiral symmetry (χ ISs)

• $\bar{g}_{0,1}$ generated through insertion of the quark mass and mass difference

extra m_{π}^2/M_{QCD}^2 suppression!

• NN and N γ couplings do not break chiral symmetry

no extra suppression

same importance for long & short range operators

qEDM

- hadronic operators suppressed by $\alpha_{\rm em}$
- only $\overline{d}_{0,1}$ relevant

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$J_{ed}^{\mu}(q) = 2i \left(S \cdot q v^{\mu} - S^{\mu} v \cdot q \right) \left(F_0(\mathbf{q}^2) + \tau_3 F_1(\mathbf{q}^2) \right)$$

$$F_i(\mathbf{q}^2) = d_i - S'_i \mathbf{q}^2 + H_i(\mathbf{q}^2), \qquad \mathbf{q}^2 = -q^2.$$

 $F_0(q^2)$

 $F_1(q^2)$

- · purely short-distance
- · momentum independent

• short-distance & charged pions in the loops

 \bar{g}_0 only relevant π -N coupling!

nucleon EDFF cannot distinguish between Theta Term, qCEDM & $\Xi_{1,8}$

Leading Order

• F_0 purely short-distance & momentum independent

$$d_0 = \overline{d}_0 \qquad S'_0 = 0$$

• pion loop contribute to $d_1 \& S'_1$

$$d_{1} = \bar{d}_{1} + \frac{eg_{A}\bar{g}_{0}}{(2\pi F_{\pi})^{2}} \left[L - \ln \frac{m_{\pi}^{2}}{\mu^{2}} \right],$$
$$S_{1}' = \frac{eg_{A}\bar{g}_{0}}{(2\pi F_{\pi})^{2}} \frac{1}{6m_{\pi}^{2}}$$

LO: R. Crewther et al., '79, W. Hockings and U. van Kolck, '05.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Next-to-Leading Order

• first non-analytic contribution & momentum dependence to $F_0(\mathbf{q}^2)$

$$d_0 = \bar{d}_0 + \frac{eg_A \bar{g}_0}{(2\pi F_\pi)^2} \pi \frac{3m_\pi}{4m_N} \left(1 + \frac{\bar{g}_1}{3\bar{g}_0} \right) \qquad S'_0 = -\frac{eg_A \bar{g}_0}{(2\pi F_\pi)^2} \frac{1}{6m_\pi^2} \pi \frac{\delta m_N}{2m_\pi}$$

recoil corrections to F₁

$$d_{1} = \bar{d}_{1} + \frac{eg_{A}\bar{g}_{0}}{(2\pi F_{\pi})^{2}} \left[L - \ln \frac{m_{\pi}^{2}}{\mu^{2}} + \frac{5\pi}{4} \frac{m_{\pi}}{m_{N}} \left(1 + \frac{\bar{g}_{1}}{5\bar{g}_{0}} \right) \right],$$

$$S_{1}' = \frac{eg_{A}\bar{g}_{0}}{(2\pi F_{\pi})^{2}} \frac{1}{6m_{\pi}^{2}} \left[1 - \frac{5\pi}{4} \frac{m_{\pi}}{m_{N}} \right]$$

LO: R. Crewther et al., '79, W. Hockings and U. van Kolck, '05. NLO: Ottnad et al., '09, EM et al., '10

イロト 不得 とうほう イヨン

э

Nucleon EDM. $\bar{\theta}$ term.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

- EDM depends on \bar{g}_0 , and short-distance LECs $\bar{d}_{0,1}$
- neutron EDM

$$|d_n| = |d_0 - d_1| \gtrsim \frac{eg_A \bar{g}_0}{(2\pi F_\pi)^2} \left[\ln \frac{m_N^2}{m_\pi^2} + \frac{\pi}{2} \frac{m_\pi}{m_N} \right] \simeq (0.13 + 0.01) \frac{\bar{g}_0}{F_\pi} e \,\mathrm{fm}$$
$$\simeq 2.2 \times 10^{-3} \,\bar{\theta} \,e \,\mathrm{fm}$$

- good convergence of perturbative series
- from bound on d_n , $\bar{\theta} \lesssim 10^{-10}$
- NLO bound on isoscalar EDM

$$|d_0| \gtrsim \frac{eg_A \bar{g}_0}{(2\pi F_\pi)^2} \pi \frac{3m_\pi}{4m_N} \simeq 0.012 \, \frac{\bar{g}_0}{F_\pi} \, e \, \text{fm}$$

= $0.2 \times 10^{-3} \, \bar{\theta} \, e \, \text{fm}.$

• but no reason to drop the counterms, $\bar{d}_{0,1}$

Nucleon EDM. qCEDM & $\Xi_{1,8}$.

qCEDM

$$|d_n| = |d_0 - d_1| \gtrsim \frac{eg_A \bar{g}_0}{(2\pi F_\pi)^2} \left[\ln \frac{m_N^2}{m_\pi^2} + \frac{\pi}{2} \frac{m_\pi}{m_N} \right] \qquad \simeq (0.13 + 0.01) \frac{\bar{g}_0}{F_\pi} \ e \ \mathrm{fm}$$
$$\simeq 1.6 \times 10^{-2} \ \tilde{\delta}_{0,3} \left(\frac{M_{QCD}}{M_f} \right)^2 \ e \ \mathrm{fm}$$

• from current bound on d_n

$$|\tilde{\delta}_{0,3}| \left(rac{\mathrm{TeV}}{M_f^2}
ight)^2 \lesssim (5\cdot 10^2)^{-2}$$

. . . but in most models $\tilde{\delta}_{0,3} \ll 1 \dots$

• FQLR: $\bar{g}_0 \sim \delta m_N$, a bit smaller than NDA

$$|d_n| \simeq 0.2 |\xi| \left(\frac{M_{QCD}}{M_f}\right)^2 e \,\mathrm{fm} \Longrightarrow |\xi| \left(\frac{\mathrm{TeV}}{M_f}\right)^2 \lesssim (10^4)^{-2}$$

• factor of 10 weaker than in literature

H. An, X. Ji, F. Xu, '09

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Nucleon EDM and EDFF. qEDM & χ ISs

- · EDFF purely short-distance & momentum independent at LO
- EDFF acquires momentum dependence at NNLO
 - purely short distance for qEDM
 - with long distance component for χ ISs

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

isoscalar

$$F_0(\mathbf{q}^2) = d_0 = \bar{d}_0$$

isovector

$$F_1(\mathbf{q}^2) = d_1 = \bar{d}_1$$

Nucleon EDM and EDFF. qEDM & χ ISs

- · EDFF purely short-distance & momentum independent at LO
- EDFF acquires momentum dependence at NNLO
 - purely short distance for qEDM
 - with long distance component for χ ISs

from NDA

$$|\delta_{0,3}| \left(\frac{\text{TeV}}{M_{f}}\right)^{2} \lesssim \left(5 \cdot 10^{2}\right)^{-2}, \qquad |w| \left(\frac{\text{TeV}}{M_{f}}\right)^{2} \lesssim \left(10^{3}\right)^{-2}$$

・ロト・日本・日本・日本・日本・日本・日本

Nucleon EDM and EDFF. Sum up

Source	$\bar{ heta}$	qCEDM & $\Xi_{1,8}$	qEDM	χ ISs
$M_{\rm QCD} d_n/e$	$\mathcal{O}\left(\bar{ heta}rac{m_{\pi}^{2}}{M_{ ext{QCD}}^{2}} ight)$	$\mathcal{O}\left(ilde{\delta}rac{m_\pi^2}{M_T^2} ight)$	$\mathcal{O}\left(\delta \frac{m_{\pi}^2}{M_T^2}\right)$	$\mathcal{O}\left(w\frac{M_{\rm QCD}^2}{M_T^2}\right)$
d_p/d_n	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$m_{\pi}^2 S_1'/d_n$	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(rac{m_{\pi}^2}{M_{ m QCD}^2} ight)$	$\mathcal{O}\left(rac{m_{\pi}^2}{M_{ m QCD}^2} ight)$
$m_\pi^2 S_0'/d_n$	$\mathcal{O}\left(rac{m_{\pi}}{M_{ m QCD}} ight)$	$\mathcal{O}\left(rac{m_{\pi}}{M_{ ext{QCD}}} ight)$	$\mathcal{O}\left(rac{m_{\pi}^2}{M_{ m QCD}^2} ight)$	$\mathcal{O}\left(\frac{m_{\pi}^2}{M_{\rm QCD}^2}\right)$

- measurement of d_n and d_p can be fitted by any source.
- S'_1 come at the same order as d_i
- S'_0 suppressed by m_{π}/M_{QCD} with respect to d_i
- scale for momentum variation of EDFF set by m_{π}
- $S'_{1,0}$ suppressed by m_{π}^2/M_{QCD}^2 with respect to d_i

Theta Term & qCEDM

qEDM & χ ISs

◆□▶◆圖▶◆目▶◆目▶ 目 のへぐ

binding energy $Q^2/m_N!$

- · nucleon propagator non static
- enhanced w.r.t chiral power counting

・ロト・個ト・モト・モー シへの

▲□▶▲□▶▲□▶▲□▶ □ のQで

イロト 不得 とうほう イヨン

3

• "perturbative pions"

- 1. LO potential: contact S-wave operator (C_0)
- 2. pion exchange as perturbation: $Q/M_{NN} \ll 1$

イロト 不得 トイヨト イヨト ニヨー

3. $\gamma = \sqrt{m_N B}$ only relevant parameter in LO

- "perturbative pions"
- "non-perturbative pions"

1. pion exchange leading effect

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $Q/M_{NN} \sim 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

· pion-exchange dominates for chiral breaking sources

selection rules!

• light nuclei EDMs enhanced w.r.t d_n , d_p

$$d_{0,1} \qquad \qquad \frac{\bar{g}_0}{m_N^2} \frac{Q}{M_{NN}} \qquad \qquad \frac{\bar{g}_{0,1}}{Q^2}, \bar{C}_{1,2} F_{\pi}^2 \times \frac{Q}{M_{NN}} \qquad \qquad \frac{\bar{g}_{0,1}}{m_N^2} \frac{Q^2}{M_{NN}^2}$$

- for qEDM one-body contribution dominates
- no substantial deviation from d_n , d_p
- for χ ISs, all contribs. should be considered
- with slight dominance of one-body piece

▲□▶▲□▶▲□▶▲□▶ □ のQで

- for qEDM one-body contribution dominates
- no substantial deviation from d_n , d_p
- for χ ISs, all contribs. should be considered
- with slight dominance of one-body piece

Deuteron EDM and MQM

Spin 1, Isospin 0 particle

$$H_{\mathcal{T}} = -2d_d \mathcal{D}^{\dagger} \mathbf{S} \cdot \mathbf{E} \mathcal{D} - \mathcal{M}_d \mathcal{D}^{\dagger} \{ S^i, S^j \} \mathcal{D} \nabla^{(i} B^{j)}$$

 d_d : deuteron EDM \mathcal{M}_d : deuteron magnetic quadrupole moment (MQM).

dEDM

• isoscalar ($\bar{g}_0, \bar{C}_{1,2}$) TV corrections to wavefunction vanish at LO.

dMQM

• both isoscalar & isovector corrections contribute

Deuteron EDM and MQM

Spin 1, Isospin 0 particle

$$H_{\mathcal{T}} = -2d_d \mathcal{D}^{\dagger} \mathbf{S} \cdot \mathbf{E} \mathcal{D} - \mathcal{M}_d \mathcal{D}^{\dagger} \{ S^i, S^j \} \mathcal{D} \nabla^{(i} B^{j)}$$

 d_d : deuteron EDM \mathcal{M}_d : deuteron magnetic quadrupole moment (MQM).

dEDM

• isoscalar ($\bar{g}_0, \bar{C}_{1,2}$) TV corrections to wavefunction vanish at LO.

dMQM

• both isoscalar & isovector corrections contribute

Deuteron EDM

TV corrections to wavefunction

One-body

"perturbative pions": expand in γ/M_{NN} , $\gamma = 45$ MeV

· only sensitive to isoscalar nucleon EDM

$$F_D(\mathbf{q}^2) = 2d_0 \frac{4\gamma}{|\mathbf{q}|} \arctan\left(\frac{|\mathbf{q}|}{4\gamma}\right) = 2d_0 \left(1 - \frac{1}{3} \left(\frac{|\mathbf{q}|}{4\gamma}\right)^2 + \ldots\right)$$

• sensitive to **isobreaking** \bar{g}_1

$$F_D(\mathbf{q}^2) = -\frac{2}{3} e^{\frac{g_A \bar{g}_1}{m_\pi^2}} \frac{m_N m_\pi}{4\pi F_\pi^2} \frac{1+\xi}{(1+2\xi)^2} \left(1-0.45 \left(\frac{|\mathbf{q}|}{4\gamma}\right)^2 + \dots\right), \qquad \xi = \frac{\gamma}{m_\pi}$$
$$= -0.23 \frac{\bar{g}_1}{F_\pi} e \operatorname{fm} + \mathcal{O}(\mathbf{q}^2)$$

J. de Vries, et al, '11

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Deuteron EDM. Non perturbative results

Iterate pions: $\gamma/M_{NN} \sim 1$

- realistic potentials for TC interactions (AV18, CD-Bonn, Nijmegen II, Reid93)
- · EFT potential & currents for TV interactions

ok ... if observable not too sensitive to short distance details

$$d_d = d_n + d_p - 0.19 \, \frac{\overline{g}_1}{F_\pi} \, e \, \mathrm{fm} \, ,$$

for AV18, C. P. Liu and R. Timmermans, '04; J. de Vries, et al, '12

• different potentials agree at the 10% level

I.R. Afnan and B. Gibson, '10; J. Bsaisou, et al., '12;

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• good agreement with the perturbative calculation

Source	qCEDM $\times M_f^2/M_{QCD}^2$	$\Xi_{1,8} \times M_f^2 / M_{QCD}^2$	$\bar{\theta}$ term
d_d	$(0.5+1.7) \cdot 10^{-2} \tilde{\delta}$	$(0.3 + 1.1)\tilde{\xi}$	$(5+0.3) \cdot 10^{-3} \bar{\theta}$

qCEDM & $\Xi_{1,8}$

• \bar{g}_1 is leading, deuteron mainly two-body

• $\bar{\theta}$: other formally LO pieces are small.

• d₀ about 30 % correction

 $\bar{\theta}$ term

d_d well approximated by 2*d*₀
 10% corrections from <u>g</u>₁

Accuracy of the calculation:

- qCEDM: $\not P T$ potential and currents up to NLO $\leq 10\%$
- $\Xi_{1,8}$: 3π vertex contributes at NLO, $\pi Q/M_{QCD} \sim 30\%$

not in the calculation yet!

 $d_d \gtrsim 2d_0$

$$d_d = 2d_0$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Deuteron EDM. qEDM & χ ISs

Source $\times M_f^2 / M_{QCD}^2$	qEDM	χ ISs
d_d	$(0.5 + 10^{-3}) \cdot 10^{-2} \delta$	(0.34 + 0.02) w

qEDM

- *g*₁ suppressed by α_{em}
- *d_d* purely one-body

$\chi \mathrm{ISs}$

- $\bar{g}_1 \& d_0$ same order
- \bar{g}_1 contribs. suppressed by γ/M_{NN}
- conclusion based on NDA. Need to do better!

$$d_d = 2d_0$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Deuteron MQM. Theta Term.

$$m_d \mathcal{M}_d = -\left[0.30(1+\kappa_1)\frac{\bar{g}_1}{F_\pi} + 0.42(1+\kappa_0)\frac{\bar{g}_0}{F_\pi}\right] e \,\mathrm{fm}$$
$$\approx -\left[2 \cdot 10^{-3} + 5 \cdot 10^{-3}\right] \bar{\theta} \, e \,\mathrm{fm}$$
$$(1+\kappa_1) = 4.7, \quad (1+\kappa_0) = 0.88$$

J. de Vries et al., '12

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- no one-body contamination
- $\bar{g}_1 \& \bar{g}_0$ contributions roughly comparable large κ_1 enhances \bar{g}_1
- · enhanced w.r.t to the long-range contribution to deuteron EDM

EDM of ³He and ³H

· AV18, EFT potentials for TC interactions

code of I. Stetcu et al., '08

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $d_{^{3}\mathrm{He}}$ and $d_{^{3}\mathrm{H}}$ depend on 6 TV coefficients

$$d_{^{3}\text{He}} = 0.88 \, d_n - 0.047 \, d_p - \left(0.15 \, \frac{\bar{g}_0}{F_\pi} + 0.28 \, \frac{\bar{g}_1}{F_\pi} + 0.01 \, F_\pi^3 \bar{C}_1 - 0.02 \, F_\pi^3 \bar{C}_2\right) e \, \text{fm}$$

$$d_{^{3}\text{H}} = -0.050 \, d_n + 0.90 \, d_p + \left(0.15 \, \frac{\bar{g}_0}{F_\pi} - 0.28 \, \frac{\bar{g}_1}{F_\pi} + 0.01 \, F_\pi^3 \bar{C}_1 - 0.02 \, F_\pi^3 \bar{C}_2\right) e \, \text{fm} ,$$

numbers for AV18 J. de Vries, *et al*, '12.

- different potentials agree at 25% for one-body & pion-exchange contribs.
- no agreement for short range contribution $(\bar{C}_{1,2})$ for EFT potential, $\bar{C}_{1,2}$ contribs. five time bigger
 - short-distance not treated consistently, need fully consistent calculation for χISs!
 - . . . but $\overline{C}_{1,2}$ small correction

EDM of ³He and ³H. Theta Term.

$$\frac{d_{^{3}\text{H}} - d_{^{3}\text{He}}}{2} = 0.95 d_1 + 0.15 \frac{\bar{g}_0}{F_{\pi}} e \text{ fm}$$
$$\frac{d_{^{3}\text{H}} + d_{^{3}\text{He}}}{2} = 0.85 d_0 - 0.28 \frac{\bar{g}_1}{F_{\pi}} e \text{ fm}$$

EDM of ³He and ³H. Theta Term.

$$\frac{d_{^{3}\text{H}} - d_{^{3}\text{He}}}{2} = (1.8 \cdot 10^{-3} + 2.2 \cdot 10^{-3}) \,\bar{\theta} \, e \, \text{fm}$$
$$\frac{d_{^{3}\text{H}} + d_{^{3}\text{He}}}{2} = (2.0 \cdot 10^{-3} + 0.2 \cdot 10^{-3}) \,\bar{\theta} \, e \, \text{fm}$$

• isovector EDM significantly different from d1

but \bar{g}_0 less important than expected from NDA

EDM of ³He and ³H. Theta Term.

$$\frac{d_{^{3}\text{H}} - d_{^{3}\text{He}}}{2} = (1.8 \cdot 10^{-3} + 2.2 \cdot 10^{-3}) \,\bar{\theta} \, e \, \text{fm}$$
$$\frac{d_{^{3}\text{H}} + d_{^{3}\text{He}}}{2} = (2.0 \cdot 10^{-3} + 0.2 \cdot 10^{-3}) \,\bar{\theta} \, e \, \text{fm}$$

• isovector EDM significantly different from d1

but \bar{g}_0 less important than expected from NDA

• \bar{g}_1 gives 10 % correction to isoscalar EDM

smallness of \bar{g}_0 & nuclear matrix element increases importance of one-body!

in agreement with ptb. counting

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

EDM of ³He and ³H. Dimension 6 Sources.

$$\frac{d_{^{3}\text{H}} - d_{^{3}\text{He}}}{2} = 0.95 \, d_1 + \left(0.15 \frac{\bar{g}_0}{F_{\pi}} + 0.01 F_{\pi}^3 \bar{C}_1 - 0.02 F_{\pi}^3 \bar{C}_2\right) \, e \, \text{fm}$$
$$\frac{d_{^{3}\text{H}} + d_{^{3}\text{He}}}{2} = 0.85 \, d_0 - 0.28 \frac{\bar{g}_1}{F_{\pi}} \, e \, \text{fm}$$

Source	qCEDM	qEDM	χ ISs
$(d_{^{3}\mathrm{H}} - d_{^{3}\mathrm{He}})/2$	$(1+1.3) \cdot 10^{-2} \tilde{\delta}$	$0.2 \cdot 10^{-2} \delta$	(0.17 + 0.01 + 0.005) w
$(d_{^{3}\mathrm{H}} + d_{^{3}\mathrm{He}})/2$	$(0.2+2.5)\cdot 10^{-2}\tilde{\delta}$	$0.2 \cdot 10^{-2} \delta$	(0.14 + 0.02) w

qCEDM

- both isoscalar and isovector significantly different from *d*_{0,1}
- \bar{g}_0 and d_1 roughly equally important,
- \bar{g}_1 dominate, 10% correction from d_0

qEDM & χ ISs

no deviation from d_{0,1}

but large uncertainty in $\bar{C}_{1,2}$ contrib.

to do: $\Xi_{1,8}$

- qualitatively similar to qCEDM
- but three-body TV force at LO

EDM of Light Nuclei. Summary

Source	$\overline{ heta}$	qCEDM & $\Xi_{1,8}$	qEDM	χ ISs
d_n	$\mathcal{O}\left(ar{ heta}rac{m_{\pi}^2}{M_{QCD}^3} ight)$	$\mathcal{O}\left(ilde{\delta} rac{m_{\pi}^2}{M_{QCD}M_f^2} ight)$	$\mathcal{O}\left(\delta rac{m_{\pi}^2}{M_{QCD}M_f^2} ight)$	$\mathcal{O}\left(w\frac{M_{QCD}}{M_{f}^{2}}\right)$
d_d/d_n	$\mathcal{O}(1)$	$\mathcal{O}(10)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$m_d \mathcal{M}_d/d_d$	$\mathcal{O}\left(10 ight)$	$\mathcal{O}(1)$	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(1 ight)$
$(d_{^{3}\mathrm{H}} - d_{^{3}\mathrm{He}})/d_{n}$	$\mathcal{O}(10)$	$\mathcal{O}(10)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$(d_{^{3}\mathrm{H}}+d_{^{3}\mathrm{He}})/d_{n}$	$\mathcal{O}(1)$	$\mathcal{O}(10)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$

Chiral & Isospin-breaking sources

- light nuclei dominated by OPE
- large deviation from d_n , d_p for deuteron, three-nucleon

Chiral breaking & Isoscalar source

- \bar{g}_0 important, \bar{g}_1 small
- significant deviation from d_n , d_p for $d_{3H} d_{3He}$

Chiral invariant & EM sources

• no deviation from d_n, d_p

Summary & Conclusion

EFT approach

- 1. consistent framework to treat 1, 2, and 3 nucleon TV observables
- 2. qualitative relations between 1, 2, and 3 nucleon observables, specific to TV source
- 3. particularly promising for qCEDM, $\Xi_{1,8}$ and Theta Term

identify/exclude them in next generation of experiments?

4. not much hope to distinguish between qEDM and χ ISs

other observables? TV observables w/o photons?

To-do list

- 1. beyond NDA
- 2. improve calculation
- other observables, deuteron MQM, proton Schiff moment

- compute LECs on the lattice
- NLO with perturbative pions
- fully consistent non ptb. calculation for ³He, ³H

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- three-body force for Ξ_{1,8}
- study atomic EDMs

◆□▶ ◆畳▶ ◆豆≯ ◆豆≯ →□ ▼

Backup Slides

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

Lattice Evaluation of the Nucleon EDM

from: Eigo Shintani, talk at Project X Physics Study, June '12.

Dimension 6 sources: some preliminary work on qEDM

see: T. Bhattacharya, talk at Project X Physics Study, June '12.

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Lattice Evaluation of the Nucleon EDM

Theta Term

- ~ 10 times bigger than χPT result
- still large error, large m_{π}
- · EDFF mainly isovector

from: Eigo Shintani, talk at Project X Physics Study, June '12.

Dimension 6 sources: some preliminary work on qEDM

see: T. Bhattacharya, talk at Project X Physics Study, June '12.

イロト 不得 とうほう 不良 とう

3

Helion & Triton EDM. Details

▲□▶▲□▶▲□▶▲□▶ □ のQで

For EFT potential:

- $N_{max} = 40$
- still linear dependence on m_{1,2} at m_{1,2} ∼ 2.5 GeV

Electromagnetic and T-violating operators

- chiral properties of $(P_3 + P_4) \otimes (I + T_{34})$
- lowest chiral order $\Delta = 3$
- $P_3 + P_4$

$$\mathcal{L}_{k,f=2,\text{em}}^{(3)} = c_{1,\text{em}}^{(3)} \frac{1}{D} \left[\frac{2\pi_3}{F_{\pi}} + \rho \left(1 - \frac{\pi^2}{F_{\pi}^2} \right) \right] \bar{N} \left(S^{\mu} v^{\nu} - S^{\nu} v^{\mu} \right) N \, eF_{\mu\nu}$$

•
$$(P_3 + P_4) \otimes T_{34}$$

$$\mathcal{L}_{\acute{\chi},f=2,\mathrm{em}}^{(3)} = c_{3,\mathrm{em}}^{(3)} \bar{N} \left[-\frac{2}{F_{\pi}D} \boldsymbol{\pi} \cdot \mathbf{t} - \rho \left(t_3 - \frac{2\pi_3}{F_{\pi}^2 D} \boldsymbol{\pi} \cdot \mathbf{t} \right) \right] \left(S^{\mu} v^{\nu} - S^{\nu} v^{\mu} \right) N \, eF_{\mu\nu}$$

+ tensor

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

• isoscalar and isovector EDM related to pion photo-production.

Electromagnetic and *T*-violating operators

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

At the same order $S_4 \otimes (1 + T_{34})$

$$\mathcal{L}_{\chi,f=2,\text{em}}^{(3)} = c_{6,\text{em}}^{(3)} \left(-\frac{2}{F_{\pi}D} \right) \bar{N} \boldsymbol{\pi} \cdot \mathbf{t} \left(S^{\mu} v^{\nu} - S^{\nu} v^{\mu} \right) N \, eF_{\mu\nu}$$

• $S_4 \otimes T_{34}$

• S₄

$$\mathcal{L}_{\text{\&},f=2,\text{em}}^{(3)} = c_{8,\text{em}}^{(3)} \frac{2\pi_3}{F_{\pi}D} \bar{N} \left(S^{\mu} v^{\nu} - S^{\nu} v^{\mu} \right) N \, eF_{\mu\nu} + \text{tensor}$$

- same chiral properties as partners of *𝔅* operator
- pion-photoproduction constrains only $c_{1, \text{ em}}^{(3)} + c_{6, \text{ em}}^{(3)}$ and $c_{3, \text{ em}}^{(3)} + c_{8, \text{ em}}^{(3)}$

• but
$$/\!\!\!T$$
 only depends on $c_{1, \text{ em}}^{(3)}$ and $c_{3, \text{ em}}^{(3)}$

no T-conserving observable constrains short distance contrib. to nucleon EDM

- true only in $SU(2) \times SU(2)$
- larger symmetry of $SU(3) \times SU(3)$ leaves question open

T-even sector

$$\mathcal{L}_{f=4} = -C_0^{3S_1} (N'P^iN)^{\dagger} N'P^iN + \frac{C_2^{3S_1}}{8} \left[(N'P_iN)^{\dagger} N' \mathbf{D}_{-}^2 P_i N + \text{h.c.} \right] + \dots, \qquad P^i = \frac{1}{\sqrt{8}} \sigma_2 \sigma_i \tau_2$$

• enhance C_0 to account for unnaturally large scattering lengths. In PDS scheme

$$C_0^{^3S_1} = \mathcal{O}\left(\frac{4\pi}{m_N\mu}\right), \qquad \mu \sim Q$$

• iterate C_0 at all orders

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

T-even sector

$$\mathcal{L}_{f=4} = -C_0^{3S_1} (N^t P^i N)^{\dagger} N^t P^i N + \frac{C_2^{3S_1}}{8} \left[(N^t P_i N)^{\dagger} N^t \mathbf{D}_{-}^2 P_i N + \text{h.c.} \right] + \dots, \qquad P^i = \frac{1}{\sqrt{8}} \sigma_2 \sigma_i \tau_2$$

• enhance C_0 to account for unnaturally large scattering lengths. In PDS scheme

$$C_0^{^3S_1} = \mathcal{O}\left(\frac{4\pi}{m_N\mu}\right), \qquad \mu \sim Q$$

- iterate C_0 at all orders
- operators which connect *S*-waves get enhanced $C_2^{{}^3S_1} = \mathcal{O}\left(\frac{4\pi}{m_N\Lambda_{NN}}\frac{1}{\mu^2}\right)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

· treat pion exchange as a perturbation

Perturbative pion approach:

- expansion in Q/Λ_{NN} , with $Q \in \{|\mathbf{q}|, m_{\pi}, \gamma = \sqrt{m_N B}\}$
- competing with the m_{π}/M_{QCD} of ChPT Lagrangian
 - · successful for deuteron properties at low energies

Kaplan, Savage and Wise, Phys. Rev. C 59, 617 (1999);

• problems in ${}^{3}S_{1}$ scattering lenghts, ptb. series does not converge for $Q \sim m_{\pi}$

Fleming, Mehen, and Stewart, Nucl. Phys. A 677, 313 (2000);

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

· treat pion exchange as a perturbation

• identify
$$\Lambda_{NN} = 4\pi F_{\pi}^2/m_N \sim 300$$
 MeV.

Perturbative pion approach:

- expansion in Q/Λ_{NN} , with $Q \in \{|\mathbf{q}|, m_{\pi}, \gamma = \sqrt{m_N B}\}$
- competing with the m_{π}/M_{QCD} of ChPT Lagrangian

• successful for deuteron properties at low energies

Kaplan, Savage and Wise, Phys. Rev. C 59, 617 (1999);

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• problems in ${}^{3}S_{1}$ scattering lenghts, ptb. series does not converge for $Q \sim m_{\pi}$

Fleming, Mehen, and Stewart, Nucl. Phys. A 677, 313 (2000);

T-odd sector

a. four-nucleon T-odd operators

$$\mathcal{L}_{\mathcal{T},f=4} = C_{1,\mathcal{T}}\bar{N}S \cdot (\mathcal{D} + \mathcal{D}^{\dagger})N \,\bar{N}N + C_{2,\mathcal{T}}\bar{N}\boldsymbol{\tau} \,S \cdot (\mathcal{D} + \mathcal{D}^{\dagger})N \,\cdot \bar{N} \,\boldsymbol{\tau}N.$$

• in the PDS scheme

1. Theta 2. qCEDM 3. qEDM 4. gCEDM

$$C_{i,f} = \frac{4\pi}{\mu m_N} \overline{\theta} \frac{m_{\pi}^2}{M_{QCD} \Lambda_{NN}^2} = \frac{4\pi}{\mu m_N} \widetilde{\delta} \frac{m_{\pi}^2}{M_f^2 M_{QCD}} = 0 = \frac{4\pi}{\mu m_N} \frac{w}{M_f^2} \Lambda_{NN}$$

b. four-nucleon T-odd currents

$$\mathcal{L}_{\mathcal{T}, \text{ em}, f=4} = C_{1, \mathcal{T}, \text{ em}} \bar{N} (S^{\mu} v^{\nu} - S^{\nu} v^{\mu}) N \bar{N} N F_{\mu\nu}.$$

• in the PDS scheme

1. Theta 2. qCEDM 3. qEDM 4. gCEDM

$$C_{i,T,\text{em}} = \frac{4\pi}{\mu^2 m_N} \overline{\theta} \frac{m_\pi^2}{M_{QCD} \Lambda_{NN}^2} = \frac{4\pi}{\mu^2 m_N} \delta \frac{m_\pi^2}{M_T^2 M_{QCD}} = \frac{4\pi}{\mu^2 m_N} \delta \frac{m_\pi^2}{M_T^2 M_{QCD}} = \frac{4\pi}{\mu^2 m_N} \frac{w}{M_T^2} \Lambda_{NN}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Deuteron EDM. Formalism

- crossed blob: insertion of interpolating field $D^i(x) = N(x)P_i^{^3S_1}N(x)$
- two-point and three-point Green's functions expressed in terms of *irreducible* function

irreducible: do not contain $C_0^{3S_1}$

• by LSZ formula

$$\langle \mathbf{p}' j | J^{\mu}_{\mathrm{em},\mathcal{T}} | \mathbf{p} i \rangle = i \left[\frac{\Gamma^{\mu}_{ij} \left(\bar{E}, \bar{E}', \mathbf{q} \right)}{d\Sigma(\bar{E})/dE} \right]_{\bar{E}, \bar{E}' = -B}$$

• two-point function

$$\left. \frac{d\Sigma_{(1)}}{d\bar{E}} \right|_{\bar{E}=-B} = -i \frac{m_N^2}{8\pi\gamma}$$