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Introduction
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Testing basics

 The goals of testing

– Examine an application to ensure it

● fulflls the requirements for which it was designed

– Does it do what we designed it to do (for all target experiments)

● meets quality expectations

– E.g., reliability, performance, (for LArSoft) interoperability, etc.

● meets customer (= our!) expectations

– Does it do what we want? Will it produce the physics results we want?

 Two basic types

– Unit testing

– integration testing
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Unit tests

 Why unit test?

– Unit testing improves the efciency of the development process:

● Finds problems early

– Should write test as you go (or test frst, then write)
● You will never understand the code better than when you frst wrote it

● Provides good test coverage

– Consistent unit testing program => every logical piece gets tested

● Avoids the waste of disposable tests 

– Unit test results should always be the same, so can be used indefnitely

● Provides a set of working examples

● Allows a developer to change code with confdence

– E.g., code changes to improve computing performance, to extend functionality, etc.

● Increases the probability that code produces “correct” answers
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Unit tests

 A good unit test:

– tests a single logical concept in the system

– is fully automated

– has full control over all pieces running (e.g., uses mocks/stubs for isolation)

– runs in memory (e.g., no DB or fle access)

– can be run in any order, if together with other tests

– consistently returns the same result (e.g., no random numbers)

– runs fast

– is readable

– is maintainable

– is trustworthy (i.e., when the test fails, it means your code is broken!)
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Integration tests

 Logical extension of unit testing

– Identifes problems when “units” are combined

 Any test that uses “lar -c …”

– Tests of one or more modules and services

– Tests of reconstruction or simulation chain

– Tests that check readability of data

– etc.
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Regression testing

 A testing strategy by which

– Existing tests are run against modifed code

● Checks whether code changes break anything that worked prior to the change

– Write new tests only where necessary

This is how the LArSoft testing system is designed to work
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LArSoft tests

 Tests within the LArSoft context

– Any command / script / program that:

● tests some piece of code

● exits with 0 when the test passes, or a non-zero value when the test fails

– Unit tests

● Utilizes 'make test' during the build procedure

● Confgured via CMakeLIsts.txt fles

● Tests run prior to mrb install phase

– Integration tests

● Tests run by LArSoft CI system scripts

● Confgured via text fles under the test sub-directory of each repository

● Test run after mrb install phase
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LArSoft testing objectives

 Maintain a capability to:

– Identify major problems before each individual integration or soon after

● Support “continuous integration” (CI)

● “Major” = build failures, detector interoperability, crashes, missing functionality,
data fle backward compatibility

– Track changes in computing performance metrics over time

● E.g, identify unexpected changes in CPU performance or memory usage

– Ensure that develop branch always builds and runs

– Ensure that code tagged for release operates as expected prior to release

● Contributes to release validation to some extent – a much larger topic than CI
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LArSoft testing objectives

 Provide a framework, automated tools that make testing easy

– Simple:  tests can be arbitrary scripts or use built-in features of the system

– Easily confgurable:  confguration fles in source code

– Flexible:  can aggregate tests, create workfows of dependent tests, etc.

– Conveniently monitored:  view results in layers of detail via web GUI

– Manageable:  scripts + http interface for initiating tests

● Many ways to trigger tests

– User friendly:  e.g., can run everything or parts of the system locally 

● Anywhere LArSoft is installed
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The LArSoft CI system
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LArSoft CI system

 Five major components

– The Central Build Service

– Results database / web server

– Server-side driver software 

– Client-side driver software

– Monitoring/reporting software 

● Web GUI interface

  

See https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki  

https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki
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LArSoft CI system

 Five major components

– The Central Build Service

– Results database / web server

– Server-side driver software 

– Client-side driver software

– Monitoring/reporting software 

● Web GUI interface

Written, maintained by LArSoft

Operated by Fermilab

See https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki  

https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki
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CI system overview
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CI system overview

Jenkins CI application
● Runs generic “test jobs”,

aka “builds”
● Dispatches jobs to build

slaves 

At least on build slave
for each supported OS

Build slaves can be
located anywhere.
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CI system overview

Test job launched in
response to http trigger
● Starts LArSoft server-

side test driver process

Arguments in trigger
specify run-time
configuration options
● The release to use
● The branch to build
● The “test suite” to run

(more on this later)
● Other options
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CI system overview

Server dispatches
LArSoft client-side driver
processes to build slaves
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CI system overview

Drivers report status,
progress, test results,
test logs, etc., to DB

Real-time test status,
progress, and results
viewable via web GUI
running on DB node.
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The default test workfow

A LArSoft script runs in
each step of the workflow

The workflow terminates if
any step exits with a non-
zero return value

The reporting system
displays the status of
each step according to
the return value

Note:
● The workflow itself is

configurable

● Trigger parameter specifies
which workflow to run
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Test monitoring and reports

 Status of running test jobs and results of completed test jobs

– http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index
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x

Top level CI reporting page
http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

Test phases

Boxes are links
to summary pages
for that phase

Colors indicate
status of phase

Links to Jenkins page
for the job

http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index
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Unit test (“make_test”) summary page

Links to result summary page
for specific unit tests

Total execution time (wall clock)
for unit test phase vs. test instance

Each point is a link to the top-level
CI reporting page with the selected 
test instance listed at the top
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Integration test (“ci_test”) summary page
Same basic information and layout

This test failed

These tests were skipped
because a pre-requisite test
(above) failed. 

The reason is listed here



26

Summary of test lar_ci_hitana_g4_uboonecode 

v2.0 display for this test

v2.1.2 will have all times for a given module on
a single line.

+  Plot will show times for each module

Links to output created by the test 
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Summary of test lar_ci_histcomp_uboonecode 

Plot image(s) created 
by the test job
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Confguring and running tests
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Integration test confguration

 Defned in INI-formatted confguration fles

– Python confg library rules

– Live in the source repositories:   <repo>/test/ci/ci_test.cfg fle

 Two types of sections within the fle

– Test defnition (keyword = test)

● Specifes the command and arguments to run for the test

● Files to copy in prior to the test, out after the test command

– e.g., input data for test + reference data for comparison of result

● Tests that must be run frst

● Various checks to perform

– Test suite defnition (keyword = suite)

● Specifes a collection of tests to run as a unit in a single test job

– The test suite is specifed as a trigger argument

● Dependencies taken into account, run in the correct order
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Integration test confguration fle

 Basic layout for ci_tests.cfg fle

# Simple ci_tests.cfg fle

# Defnition for a named 'testA' that uses the output from 'testB'
[test testA]
script=$<PRODUCT>_DIR/test/testA.sh
args= -a qualA -b qualB
requires= testB

# Defnition for 'testB'
[test testB]
script=$<PRODUCT>_DIR/test/testB.sh
…

# Defnition for 'testC”
[test testC]
script = $PRODUCT_DIR/test/testC.sh
…

# Defnition of test suite 'test_suiteA'
[suite test_suiteA]
testlist = testA testC

More information at https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_Runner_Introduction

Test definition blocks

Test suite definition
(can be more than one)
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Integration test confguration fle

 Basic layout for ci_tests.cfg fle

# Simple ci_tests.cfg fle

# Defnition for a named 'testA' that uses the output from 'testB'
[test testA]
script=$<PRODUCT>_DIR/test/testA.sh
args= -a qualA -b qualB
requires= testB

# Defnition for 'testB'
[test testB]
script=$<PRODUCT>_DIR/test/testB.sh
…

# Defnition for 'testC”
[test testC]
script = $PRODUCT_DIR/test/testC.sh
…

# Defnition of test suite 'test_suiteA'
[suite test_suiteA]
testlist = testA testC

More information at https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_Runner_Introduction

Creates dependency
between tests

Pre-requisites will be
run first

In this case, 'testB' will be
run as part of the suite
due to declared dependency
above
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Integration test confguration fle

 Test section keywords
● script = <command name>   [required!!]

– The command to run. Fully qualifed path or relative to directory with 

● args = <argument list>

● requires = <test name 1> [ <test name 2> […] ]

– Pre-requisite tests will be run before dependent tests

● cpu_usage_range = <low value>:<high value>

– Test fails if CPU time exceeds the range on either end

● mem_usage_range = <low value>:<high value>

– Test fails if memory usage exceeds the range on either end

– NOTE:  currently limited to the maximum for any test run, not a specifc test...

● outputN = <flename N>

– File sanity checks for N=[1...9]:  exists, more than 5 bytes, *.root fles start with 'root'  

● check_histograms = <root hist fle A> <root hist fle B> <min K-S prob value>

– Runs K-S test on histograms with same name. Test fails if any K-S prob < specifed min

– Produces web page with histogram overlays and K-S probability values

● parse_art_output = True

– Reads art log fles, parses various usage and statistics messages

More information at https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_Runner_Introduction
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Test scheduling# Sample
#
[test A]

[test B]
requires=A

[test C]
requires=B

[test D]

[test E]
requires=D

[test F]
requires=C E

[test G]

[test H]

[suite my_suite]
testlist=A B C D E F G H

A D G H

B E

C

           F

Dependent tests create
a serial workflow within 
the suite

●   Basic acyclic dependency
      graphs supported 

Independent tests run
in parallel

T
im

e

How the tests will be run:
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How to add a new integration test

 The basic steps

– Write a command, program, or a fcl fle for 'lar' that returns 0 when passed

● Any non-zero value if the test fails for any reason

– Add a new test section to the appropriate ci_tests.cfg fle

– Add the newly added test to a test suite

Will discuss running the test in a bit...   
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Unit test confguration

 Defned in CMakeLists.txt fles

– Can be defned in any CMakeLists.txt fle

– By convention, prefer   <repo>/test/<package name>/CMakeLists.txt 

● Tests apply to code in <repo>/<package name>

 Confguring tests

– cet_test macro in cetbuildtools/Modules/CetTest.cmake

– Basic usage:  cet_test( target [<options>] [<args>] [<data-fles] )

● “Target” = test name reported to the system

– Does not need to be the command executed

– Options, arguments well documented in the source code

https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/repository/revisions/master/entry/Modules/CetTest.cmake   

–

–

https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/repository/revisions/master/entry/Modules/CetTest.cmake
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Unit test confguration

 Examples from LArSoft and experiment repositories

– From larcore/test/SimpleTypesAndConstants/CMakeLists.txt

● Builds larcore/test/SimpleTypesAndConstants/testPhysicalConstants, then runs it

– From uboonecode/test/Geometry/CMakeLists.txt

● The “HANDBUILT” option prevents cet_test from attempting to build
“geoemtry_microboone” (just a name)

● Runs “lar --rethrow-all --confg ./test_geometry_uboone.fcl”

– Most existing “unit tests” are of this form. Are these really “unit tests”?

 

    cet_test( geometry_microboone HANDBUILT
                 DATAFILES test_geometry_interators.fcl
                 TEST_EXEC lar
                 TEST_ARGS –rethrow-all –confg ./test_geometry_iterators_uboone.fcl
    )

    cet_test( testPhysicalConstants )
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Unit test confguration

 Some important keywords

– Options

● HANDBUILT:  do not build the target (which is typically just a name anyway)

● NO_AUTO:  do not add to “auto test” list

– Arguments

● TEST_EXEC

– The executable to run if diferent from the “target” name. (Must also specify HANDBUILT)

● TEST_ARGS

– Arguments passed to the test to be run

● REF

– Standard output captured and compared to the specifed reference fle

● OPTIONAL_GROUPS

– Assigns the test to the listed “test groups” 

– “Test groups” are equivalent to, but distinct from “test suites”

– Can be run by setting -DCET_TEST_GROUPS <group name> on cmake command line
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Running tests

 Two methods to run integration tests

– Trigger test jobs on the central build service

● All code must be pushed to central repository frst

● By default, “git push origin develop” triggers a build

● Can trigger manually with a script that allows code on non-develop branches to
be tested

– Can specify which branch to use repository-by-repository

● View results on reporting web page:  

– http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

– Running tests locally   
See https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_runner_introduction for details

● In a working directory

● Summary of results printed to stdout

setup <software version to be tested>
setup lar_ci
test_runner <test1> <test2> ...

http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index
https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_runner_introduction
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Work session
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LArSoft test strategy

 Questions about current test suite

– Are the tests fast enough?

● Takes about 2 hours to run the suite on Linux build slaves

● Too slow for most people to pay attention to for pre or post commit testing

– Is the rate of false positives manageable?

● For example, almost all recent test jobs have “failed” status

● Typically the problem is that the test breaks, not the code being tested

–  Test coverage?

● Are we adequately checking all important code, stages?

– Even if algorithms run, do we always check that the appropriate output is there?

● Are we testing each of 35T, uBooNE, LArIAT, SBND, ArgoNeuT sufciently well?

– Do we have tests well matched to the questions at hand?

● Every-commit questions are not the same ones we need to check new releases

● But we have only one test suite



41

LArSoft test strategy

 Propose a tiered testing strategy (for unit and integration tests)

– On each individual integration (i.e on each push to central repository)

● Completeness less important than duration. 

– No more than 10-15 minutes?

● Focus on identifying “major” problems only. 

– Build failures, detector interoperability, crashes, missing functionality, can't read old
data, can't read new data

● Highly managed suite of tests 

– Once daily / nightly tests

● Focus on fnding more subtle problems

● Needs to be more complete, but time still matters.

– Before / after every release (for at least production releases)

● Completeness is more important that speed

● Possibly physics validation-like tests?

● Less managed suite of tests

 Low rate of false positives is critical in all cases
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What we have now

● geometry_iterator_test
● Wire_test
● donothing_lbne35t
● donothing_simul_lbne35t
● build_oplib_lbne35t
● geometry_microboone
● optical_digi_lbne35t
● SurfYZTest
● gensingle
● timingreference_test
● KalmanFilterTest
● testPhysicalConstants
● BulkAllocator_test
● SurfXYZTest
● geometry_iterator_uboone_test
● LATest
● geometry_test
● sparse_vector_test
● geometry_iterator_dunefd_test
● optical_sim_lbne35t
● geometry_lbne35t
● PropTest
● SimpleFits_test
● geometry_iterator_loop_uboone_test
● optical_reco_lbne35t
● geometry_dune35t_test
● prodsingle_uboone_max2
● geometry_iterator_loop_dunefd_test
● GausFitCache_test
 

● geometry_lbnefd
● geometry_iterator_loop_test
● donothing_simul_lbnefd
● donothing_lbnefd
● TrackTest
● geometry_uboone_test
● RawDigit_test
● NestedIterator_test
● CountersMap_test
● geometry_iterator_loop_dune35t_test
● StatCollector_test
● OpFlashAlg_test
● geometry_iterator
● Cluster_test
● geo_types_test
● geometry_iterator_dune35t_test
● geometry
● HitAnaAlg_test
● GeneratedEventTimestamp_test2
● AlgoThreshold_test
● geometry_dunefd_test
● donothing
● FastMatrixMath_test
● Hit_test
● Dereference_test
● GeneratedEventTimestamp_test1_1
● raw_test
● test_fcl.sh
● GeneratedEventTimestamp_test1_2 

Current unit tests

Total time:  almost 30 min!!
About 60 tests  
Vast majority are 'lar' jobs
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What we have now

● lar_ci_openold_detsim_lbnecode
● lar_ci_openold_detsim_uboonecode
● lar_ci_hitana_g4_uboonecode
● lar_ci_prodsingle_lbnecode
● lar_ci_hitana_tinyana_new_uboonecode
● lar_ci_hitana_detsim_uboonecode
● lar_ci_prodgenie_uboonecode
● lar_ci_hitana_tinyana_canonical_uboonecode
● lar_ci_hitana_prod_uboonecode
● lar_ci_histocomp_uboonecode
● lar_ci_hitana_reco2D_uboonecode
● lar_ci_prodsingle_uboonecode
● lar_ci_openold_detsim3d_uboonecode
● lar_ci_openold_detsim2d_uboonecode
● lar_ci_openold_reco_lbnecode 

Current integration tests

Total time:  about 1 hour 
(excludes the two tests that did not run)
15 tests 
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The task at hand

 Defne test use cases, create a suite for each

 Set target run times for each use case / test suite

 Defne specifc tests to be run in each

– What needs to be tested?

– How it should be checked in a way that avoids / minimize false positives?

– Does it run fast enough for the use case?
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Backup



June 3, 2015 Introduction to LArSoft CI system 46

Continuous integration

 What is continuous integration (CI)?

– A software development practice in which team members integrate their
work into the main development branch frequently, usually at least daily.
Source:  an amalgam of quotes from a search on “continuous integration defnition”

– Each integration is tested by an automated build and test system designed
to detect integration errors as quickly as possible

–

– At odds with our “managed integration” approach of using Coordination
Meetings to decide what gets merged and when?

● No... explain

 Benefts

– Low-cost method that catches problems quickly

– Maintain more stable main-line development branch

– Can create a release with known properties quickly

– Low cost
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CI system components

 Central Build Service   
https://buildmaster.fnal.gov/   

– Server plus distributed build slave nodes

● One or more slave nodes per OS to be supported

● Slave nodes can be of-site

– Jenkins CI application

● Server-side application 

– The application runs  “test jobs”, aka “builds”, in response to http-based triggers

– Arguments in trigger specify run-time confguration options
● e.g., the release, the test suite to run, the branches to use, etc
● More on triggers later

 Results database / reporting web server

– Used to store test job status, results of individual tests.

– Web server hosts monitoring and reporting GUI
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CI system components

 Client-side driver software  
(The lar-ci product)  

– Runs on the build slaves

– Processes a workfow with a number of steps, or “phases”

● The number of phases and the actions in each is confgurable by CI admins 

● The specifc workfow to run is specifed as a trigger argument

– The default workfow

● 5 phases: checkout, build, unit test, install, integration test

● Non-zero exit status at any step terminates workfow.

Two test phases 
in the default workflow
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CI system components

 Test monitoring and results viewer 
(The lar-ci-reporting product)  

– Extracts and presents test status, results from the database

● http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

– Increasing levels of detail exposed via drill-down links on each page

● Top level summary, which leads to...

● Test phase summary, which leads to...

● Single test result page, which leads to...

● Low-level output and results

– Plots of test times at the top of some pages

● Test phase summary:  elapsed time required for the phase over time

● Single test result page:  elapsed time required for that test over time, maximum
memory usage for the test over time
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