
Introduction to LArSoft CI system

Erica Snider
Fermilab

CI development team:

Eric Church, Mark Dykstra*, Lynn Garren

Patrick Gartung, Igor Mandrichenko

Mark Mengel**, Gianluca Petrillo,

Vladimir Podstavkov**, Erica Snider

* Summer student (2014)

** Lead developers

LArSoft Architecture and Testing Workshop
June 3, 2015

Fermilab

2

Outline

 Introduction

– Testing basics

– LArSoft testing objectives

 The LArSoft CI system

– Architecture overview

– Components

 Confguring and running tests

 Work session

– Test strategy

– Developing a tiered testing framework

– Discussion / work

3

Introduction

June 3, 2015 Introduction to LArSoft CI system 4

Testing basics

 The goals of testing

– Examine an application to ensure it

● fulflls the requirements for which it was designed

– Does it do what we designed it to do (for all target experiments)

● meets quality expectations

– E.g., reliability, performance, (for LArSoft) interoperability, etc.

● meets customer (= our!) expectations

– Does it do what we want? Will it produce the physics results we want?

 Two basic types

– Unit testing

– integration testing

June 3, 2015 Introduction to LArSoft CI system 5

Unit tests

 Why unit test?

– Unit testing improves the efciency of the development process:

● Finds problems early

– Should write test as you go (or test frst, then write)
● You will never understand the code better than when you frst wrote it

● Provides good test coverage

– Consistent unit testing program => every logical piece gets tested

● Avoids the waste of disposable tests

– Unit test results should always be the same, so can be used indefnitely

● Provides a set of working examples

● Allows a developer to change code with confdence

– E.g., code changes to improve computing performance, to extend functionality, etc.

● Increases the probability that code produces “correct” answers

June 3, 2015 Introduction to LArSoft CI system 6

Unit tests

 A good unit test:

– tests a single logical concept in the system

– is fully automated

– has full control over all pieces running (e.g., uses mocks/stubs for isolation)

– runs in memory (e.g., no DB or fle access)

– can be run in any order, if together with other tests

– consistently returns the same result (e.g., no random numbers)

– runs fast

– is readable

– is maintainable

– is trustworthy (i.e., when the test fails, it means your code is broken!)

June 3, 2015 Introduction to LArSoft CI system 7

Unit tests

 A good unit test:

– tests a single logical concept in the system

– is fully automated

– has full control over all pieces running (e.g., uses mocks/stubs for isolation)

– runs in memory (e.g., no DB or fle access)

– can be run in any order, if together with other tests

– consistently returns the same result (e.g., no random numbers)

– runs fast

– is readable

– is maintainable

– is trustworthy (i.e., when the test fails, it means your code is broken!)

June 3, 2015 Introduction to LArSoft CI system 8

Integration tests

 Logical extension of unit testing

– Identifes problems when “units” are combined

 Any test that uses “lar -c …”

– Tests of one or more modules and services

– Tests of reconstruction or simulation chain

– Tests that check readability of data

– etc.

June 3, 2015 Introduction to LArSoft CI system 9

Regression testing

 A testing strategy by which

– Existing tests are run against modifed code

● Checks whether code changes break anything that worked prior to the change

– Write new tests only where necessary

This is how the LArSoft testing system is designed to work

June 3, 2015 Introduction to LArSoft CI system 10

LArSoft tests

 Tests within the LArSoft context

– Any command / script / program that:

● tests some piece of code

● exits with 0 when the test passes, or a non-zero value when the test fails

– Unit tests

● Utilizes 'make test' during the build procedure

● Confgured via CMakeLIsts.txt fles

● Tests run prior to mrb install phase

– Integration tests

● Tests run by LArSoft CI system scripts

● Confgured via text fles under the test sub-directory of each repository

● Test run after mrb install phase

June 3, 2015 Introduction to LArSoft CI system 11

LArSoft testing objectives

 Maintain a capability to:

– Identify major problems before each individual integration or soon after

● Support “continuous integration” (CI)

● “Major” = build failures, detector interoperability, crashes, missing functionality,
data fle backward compatibility

– Track changes in computing performance metrics over time

● E.g, identify unexpected changes in CPU performance or memory usage

– Ensure that develop branch always builds and runs

– Ensure that code tagged for release operates as expected prior to release

● Contributes to release validation to some extent – a much larger topic than CI

June 3, 2015 Introduction to LArSoft CI system 12

LArSoft testing objectives

 Provide a framework, automated tools that make testing easy

– Simple: tests can be arbitrary scripts or use built-in features of the system

– Easily confgurable: confguration fles in source code

– Flexible: can aggregate tests, create workfows of dependent tests, etc.

– Conveniently monitored: view results in layers of detail via web GUI

– Manageable: scripts + http interface for initiating tests

● Many ways to trigger tests

– User friendly: e.g., can run everything or parts of the system locally

● Anywhere LArSoft is installed

June 3, 2015 Introduction to LArSoft CI system 13

The LArSoft CI system

June 3, 2015 Introduction to LArSoft CI system 14

LArSoft CI system

 Five major components

– The Central Build Service

– Results database / web server

– Server-side driver software

– Client-side driver software

– Monitoring/reporting software

● Web GUI interface

See https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki

https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki

June 3, 2015 Introduction to LArSoft CI system 15

LArSoft CI system

 Five major components

– The Central Build Service

– Results database / web server

– Server-side driver software

– Client-side driver software

– Monitoring/reporting software

● Web GUI interface

Written, maintained by LArSoft

Operated by Fermilab

See https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki

https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki

16

CI system overview

17

CI system overview

Jenkins CI application
● Runs generic “test jobs”,

aka “builds”
● Dispatches jobs to build

slaves

At least on build slave
for each supported OS

Build slaves can be
located anywhere.

18

CI system overview

Test job launched in
response to http trigger
● Starts LArSoft server-

side test driver process

Arguments in trigger
specify run-time
configuration options
● The release to use
● The branch to build
● The “test suite” to run

(more on this later)
● Other options

19

CI system overview

Server dispatches
LArSoft client-side driver
processes to build slaves

20

CI system overview

Drivers report status,
progress, test results,
test logs, etc., to DB

Real-time test status,
progress, and results
viewable via web GUI
running on DB node.

21

The default test workfow

A LArSoft script runs in
each step of the workflow

The workflow terminates if
any step exits with a non-
zero return value

The reporting system
displays the status of
each step according to
the return value

Note:
● The workflow itself is

configurable

● Trigger parameter specifies
which workflow to run

22

Test monitoring and reports

 Status of running test jobs and results of completed test jobs

– http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

23

x

Top level CI reporting page
http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

Test phases

Boxes are links
to summary pages
for that phase

Colors indicate
status of phase

Links to Jenkins page
for the job

http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

24

Unit test (“make_test”) summary page

Links to result summary page
for specific unit tests

Total execution time (wall clock)
for unit test phase vs. test instance

Each point is a link to the top-level
CI reporting page with the selected
test instance listed at the top

25

Integration test (“ci_test”) summary page
Same basic information and layout

This test failed

These tests were skipped
because a pre-requisite test
(above) failed.

The reason is listed here

26

Summary of test lar_ci_hitana_g4_uboonecode

v2.0 display for this test

v2.1.2 will have all times for a given module on
a single line.

+ Plot will show times for each module

Links to output created by the test

27

Summary of test lar_ci_histcomp_uboonecode

Plot image(s) created
by the test job

June 3, 2015 Introduction to LArSoft CI system 28

Confguring and running tests

29

Integration test confguration

 Defned in INI-formatted confguration fles

– Python confg library rules

– Live in the source repositories: <repo>/test/ci/ci_test.cfg fle

 Two types of sections within the fle

– Test defnition (keyword = test)

● Specifes the command and arguments to run for the test

● Files to copy in prior to the test, out after the test command

– e.g., input data for test + reference data for comparison of result

● Tests that must be run frst

● Various checks to perform

– Test suite defnition (keyword = suite)

● Specifes a collection of tests to run as a unit in a single test job

– The test suite is specifed as a trigger argument

● Dependencies taken into account, run in the correct order

30

Integration test confguration fle

 Basic layout for ci_tests.cfg fle

Simple ci_tests.cfg fle

Defnition for a named 'testA' that uses the output from 'testB'
[test testA]
script=$<PRODUCT>_DIR/test/testA.sh
args= -a qualA -b qualB
requires= testB

Defnition for 'testB'
[test testB]
script=$<PRODUCT>_DIR/test/testB.sh
…

Defnition for 'testC”
[test testC]
script = $PRODUCT_DIR/test/testC.sh
…

Defnition of test suite 'test_suiteA'
[suite test_suiteA]
testlist = testA testC

More information at https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_Runner_Introduction

Test definition blocks

Test suite definition
(can be more than one)

31

Integration test confguration fle

 Basic layout for ci_tests.cfg fle

Simple ci_tests.cfg fle

Defnition for a named 'testA' that uses the output from 'testB'
[test testA]
script=$<PRODUCT>_DIR/test/testA.sh
args= -a qualA -b qualB
requires= testB

Defnition for 'testB'
[test testB]
script=$<PRODUCT>_DIR/test/testB.sh
…

Defnition for 'testC”
[test testC]
script = $PRODUCT_DIR/test/testC.sh
…

Defnition of test suite 'test_suiteA'
[suite test_suiteA]
testlist = testA testC

More information at https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_Runner_Introduction

Creates dependency
between tests

Pre-requisites will be
run first

In this case, 'testB' will be
run as part of the suite
due to declared dependency
above

32

Integration test confguration fle

 Test section keywords
● script = <command name> [required!!]

– The command to run. Fully qualifed path or relative to directory with

● args = <argument list>

● requires = <test name 1> [<test name 2> […]]

– Pre-requisite tests will be run before dependent tests

● cpu_usage_range = <low value>:<high value>

– Test fails if CPU time exceeds the range on either end

● mem_usage_range = <low value>:<high value>

– Test fails if memory usage exceeds the range on either end

– NOTE: currently limited to the maximum for any test run, not a specifc test...

● outputN = <flename N>

– File sanity checks for N=[1...9]: exists, more than 5 bytes, *.root fles start with 'root'

● check_histograms = <root hist fle A> <root hist fle B> <min K-S prob value>

– Runs K-S test on histograms with same name. Test fails if any K-S prob < specifed min

– Produces web page with histogram overlays and K-S probability values

● parse_art_output = True

– Reads art log fles, parses various usage and statistics messages

More information at https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_Runner_Introduction

33

Test scheduling# Sample
#
[test A]

[test B]
requires=A

[test C]
requires=B

[test D]

[test E]
requires=D

[test F]
requires=C E

[test G]

[test H]

[suite my_suite]
testlist=A B C D E F G H

A D G H

B E

C

 F

Dependent tests create
a serial workflow within
the suite

● Basic acyclic dependency
 graphs supported

Independent tests run
in parallel

T
im

e

How the tests will be run:

34

How to add a new integration test

 The basic steps

– Write a command, program, or a fcl fle for 'lar' that returns 0 when passed

● Any non-zero value if the test fails for any reason

– Add a new test section to the appropriate ci_tests.cfg fle

– Add the newly added test to a test suite

Will discuss running the test in a bit...

June 3, 2015 Introduction to LArSoft CI system 35

Unit test confguration

 Defned in CMakeLists.txt fles

– Can be defned in any CMakeLists.txt fle

– By convention, prefer <repo>/test/<package name>/CMakeLists.txt

● Tests apply to code in <repo>/<package name>

 Confguring tests

– cet_test macro in cetbuildtools/Modules/CetTest.cmake

– Basic usage: cet_test(target [<options>] [<args>] [<data-fles])

● “Target” = test name reported to the system

– Does not need to be the command executed

– Options, arguments well documented in the source code

https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/repository/revisions/master/entry/Modules/CetTest.cmake

–

–

https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/repository/revisions/master/entry/Modules/CetTest.cmake

36

Unit test confguration

 Examples from LArSoft and experiment repositories

– From larcore/test/SimpleTypesAndConstants/CMakeLists.txt

● Builds larcore/test/SimpleTypesAndConstants/testPhysicalConstants, then runs it

– From uboonecode/test/Geometry/CMakeLists.txt

● The “HANDBUILT” option prevents cet_test from attempting to build
“geoemtry_microboone” (just a name)

● Runs “lar --rethrow-all --confg ./test_geometry_uboone.fcl”

– Most existing “unit tests” are of this form. Are these really “unit tests”?

 cet_test(geometry_microboone HANDBUILT
 DATAFILES test_geometry_interators.fcl
 TEST_EXEC lar
 TEST_ARGS –rethrow-all –confg ./test_geometry_iterators_uboone.fcl
)

 cet_test(testPhysicalConstants)

37

Unit test confguration

 Some important keywords

– Options

● HANDBUILT: do not build the target (which is typically just a name anyway)

● NO_AUTO: do not add to “auto test” list

– Arguments

● TEST_EXEC

– The executable to run if diferent from the “target” name. (Must also specify HANDBUILT)

● TEST_ARGS

– Arguments passed to the test to be run

● REF

– Standard output captured and compared to the specifed reference fle

● OPTIONAL_GROUPS

– Assigns the test to the listed “test groups”

– “Test groups” are equivalent to, but distinct from “test suites”

– Can be run by setting -DCET_TEST_GROUPS <group name> on cmake command line

38

Running tests

 Two methods to run integration tests

– Trigger test jobs on the central build service

● All code must be pushed to central repository frst

● By default, “git push origin develop” triggers a build

● Can trigger manually with a script that allows code on non-develop branches to
be tested

– Can specify which branch to use repository-by-repository

● View results on reporting web page:

– http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

– Running tests locally
See https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_runner_introduction for details

● In a working directory

● Summary of results printed to stdout

setup <software version to be tested>
setup lar_ci
test_runner <test1> <test2> ...

http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index
https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_runner_introduction

June 3, 2015 Introduction to LArSoft CI system 39

Work session

June 3, 2015 Introduction to LArSoft CI system 40

LArSoft test strategy

 Questions about current test suite

– Are the tests fast enough?

● Takes about 2 hours to run the suite on Linux build slaves

● Too slow for most people to pay attention to for pre or post commit testing

– Is the rate of false positives manageable?

● For example, almost all recent test jobs have “failed” status

● Typically the problem is that the test breaks, not the code being tested

– Test coverage?

● Are we adequately checking all important code, stages?

– Even if algorithms run, do we always check that the appropriate output is there?

● Are we testing each of 35T, uBooNE, LArIAT, SBND, ArgoNeuT sufciently well?

– Do we have tests well matched to the questions at hand?

● Every-commit questions are not the same ones we need to check new releases

● But we have only one test suite

41

LArSoft test strategy

 Propose a tiered testing strategy (for unit and integration tests)

– On each individual integration (i.e on each push to central repository)

● Completeness less important than duration.

– No more than 10-15 minutes?

● Focus on identifying “major” problems only.

– Build failures, detector interoperability, crashes, missing functionality, can't read old
data, can't read new data

● Highly managed suite of tests

– Once daily / nightly tests

● Focus on fnding more subtle problems

● Needs to be more complete, but time still matters.

– Before / after every release (for at least production releases)

● Completeness is more important that speed

● Possibly physics validation-like tests?

● Less managed suite of tests

 Low rate of false positives is critical in all cases

42

What we have now

● geometry_iterator_test
● Wire_test
● donothing_lbne35t
● donothing_simul_lbne35t
● build_oplib_lbne35t
● geometry_microboone
● optical_digi_lbne35t
● SurfYZTest
● gensingle
● timingreference_test
● KalmanFilterTest
● testPhysicalConstants
● BulkAllocator_test
● SurfXYZTest
● geometry_iterator_uboone_test
● LATest
● geometry_test
● sparse_vector_test
● geometry_iterator_dunefd_test
● optical_sim_lbne35t
● geometry_lbne35t
● PropTest
● SimpleFits_test
● geometry_iterator_loop_uboone_test
● optical_reco_lbne35t
● geometry_dune35t_test
● prodsingle_uboone_max2
● geometry_iterator_loop_dunefd_test
● GausFitCache_test

● geometry_lbnefd
● geometry_iterator_loop_test
● donothing_simul_lbnefd
● donothing_lbnefd
● TrackTest
● geometry_uboone_test
● RawDigit_test
● NestedIterator_test
● CountersMap_test
● geometry_iterator_loop_dune35t_test
● StatCollector_test
● OpFlashAlg_test
● geometry_iterator
● Cluster_test
● geo_types_test
● geometry_iterator_dune35t_test
● geometry
● HitAnaAlg_test
● GeneratedEventTimestamp_test2
● AlgoThreshold_test
● geometry_dunefd_test
● donothing
● FastMatrixMath_test
● Hit_test
● Dereference_test
● GeneratedEventTimestamp_test1_1
● raw_test
● test_fcl.sh
● GeneratedEventTimestamp_test1_2

Current unit tests

Total time: almost 30 min!!
About 60 tests
Vast majority are 'lar' jobs

43

What we have now

● lar_ci_openold_detsim_lbnecode
● lar_ci_openold_detsim_uboonecode
● lar_ci_hitana_g4_uboonecode
● lar_ci_prodsingle_lbnecode
● lar_ci_hitana_tinyana_new_uboonecode
● lar_ci_hitana_detsim_uboonecode
● lar_ci_prodgenie_uboonecode
● lar_ci_hitana_tinyana_canonical_uboonecode
● lar_ci_hitana_prod_uboonecode
● lar_ci_histocomp_uboonecode
● lar_ci_hitana_reco2D_uboonecode
● lar_ci_prodsingle_uboonecode
● lar_ci_openold_detsim3d_uboonecode
● lar_ci_openold_detsim2d_uboonecode
● lar_ci_openold_reco_lbnecode

Current integration tests

Total time: about 1 hour
(excludes the two tests that did not run)
15 tests

June 3, 2015 Introduction to LArSoft CI system 44

The task at hand

 Defne test use cases, create a suite for each

 Set target run times for each use case / test suite

 Defne specifc tests to be run in each

– What needs to be tested?

– How it should be checked in a way that avoids / minimize false positives?

– Does it run fast enough for the use case?

June 3, 2015 Introduction to LArSoft CI system 45

Backup

June 3, 2015 Introduction to LArSoft CI system 46

Continuous integration

 What is continuous integration (CI)?

– A software development practice in which team members integrate their
work into the main development branch frequently, usually at least daily.
Source: an amalgam of quotes from a search on “continuous integration defnition”

– Each integration is tested by an automated build and test system designed
to detect integration errors as quickly as possible

–

– At odds with our “managed integration” approach of using Coordination
Meetings to decide what gets merged and when?

● No... explain

 Benefts

– Low-cost method that catches problems quickly

– Maintain more stable main-line development branch

– Can create a release with known properties quickly

– Low cost

June 3, 2015 Introduction to LArSoft CI system 47

CI system components

 Central Build Service
https://buildmaster.fnal.gov/

– Server plus distributed build slave nodes

● One or more slave nodes per OS to be supported

● Slave nodes can be of-site

– Jenkins CI application

● Server-side application

– The application runs “test jobs”, aka “builds”, in response to http-based triggers

– Arguments in trigger specify run-time confguration options
● e.g., the release, the test suite to run, the branches to use, etc
● More on triggers later

 Results database / reporting web server

– Used to store test job status, results of individual tests.

– Web server hosts monitoring and reporting GUI

June 3, 2015 Introduction to LArSoft CI system 48

CI system components

 Client-side driver software
(The lar-ci product)

– Runs on the build slaves

– Processes a workfow with a number of steps, or “phases”

● The number of phases and the actions in each is confgurable by CI admins

● The specifc workfow to run is specifed as a trigger argument

– The default workfow

● 5 phases: checkout, build, unit test, install, integration test

● Non-zero exit status at any step terminates workfow.

Two test phases
in the default workflow

June 3, 2015 Introduction to LArSoft CI system 49

CI system components

 Test monitoring and results viewer
(The lar-ci-reporting product)

– Extracts and presents test status, results from the database

● http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

– Increasing levels of detail exposed via drill-down links on each page

● Top level summary, which leads to...

● Test phase summary, which leads to...

● Single test result page, which leads to...

● Low-level output and results

– Plots of test times at the top of some pages

● Test phase summary: elapsed time required for the phase over time

● Single test result page: elapsed time required for that test over time, maximum
memory usage for the test over time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

