Introduction to LArSoft Cl system

Erica Snider
Fermilab

CI development team:

Eric Church, Mark Dykstra*, Lynn Garren
Patrick Gartung, Igor Mandrichenko
Mark Mengel**, Gianluca Petrillo,
Vladimir Podstavkov**, Erica Snider

* Summer student (2014)
** [Lead developers

LArSoft Architecture and Testing Workshop
June 3, 2015
Fermilab

Outline

Introduction

Testing basics

LArSoft testing objectives

The LArSoft Cl system

Architecture overview

Components

Configuring and running tests

Work session

Test strateqgy
Developing a tiered testing framework

Discussion / work

Introduction

Testing basics

® The goals of testing

- Examine an application to ensure it

« fulfills the requirements for which it was designed

- Does it do what we designed it to do (for all target experiments)
* meets quality expectations

- E.qg., reliability, performance, (for LArSoft) interoperability, etc.
« meets customer (= our!) expectations

- Does it do what we want? Will it produce the physics results we want?

® Two basic types

- Unit testing

- integration testing

June 3, 2015 Introduction to LArSoft CI system

Unit tests

e \Why unit test?

- Unit testing improves the efficiency of the development process:

June 3, 2015

Finds problems early

- Should write test as you go (or test first, then write)
* You will never understand the code better than when you first wrote it
Provides good test coverage

- Consistent unit testing program => every logical piece gets tested
Avoids the waste of disposable tests
- Unit test results should always be the same, so can be used indefinitely
Provides a set of working examples
Allows a developer to change code with confidence
- E.qg., code changes to improve computing performance, to extend functionality, etc.
Increases the probability that code produces “correct” answers

Introduction to LArSoft CI system

Unit tests

® A good unit test:

tests a single logical concept in the system

- is fully automated

- has full control over all pieces running (e.g., uses mocks/stubs for isolation)
- runs in memory (e.g., no DB or file access)

- can be run in any order, if together with other tests

- consistently returns the same result (e.g., no random numbers)

- runs fast

- is readable

- iIs maintainable

- is trustworthy (i.e., when the test fails, it means your code is broken!)

June 3, 2015 Introduction to LArSoft CI system

Unit tests

® A good unit test:

tests a single logical concept in the system

- is fully automated

- has full control over all pieces running (e.g., uses mocks/stubs for isolation)
- runs in memory (e.g., no DB or file access)

- can be run in any order, if together with other tests

- consistently returns the same result (e.g., no random numbers)

- runs fast

- is readable

- iIs maintainable

- Is trustworthy (i.e., when the test fails, it means your code is broken!)

June 3, 2015 Introduction to LArSoft CI system

Integration tests

® |ogical extension of unit testing

Identifies problems when “units” are combined

® Any test that uses “lar-c ...”

Tests of one or more modules and services
Tests of reconstruction or simulation chain
Tests that check readability of data

etc.

June 3, 2015 Introduction to LArSoft CI system

Regression testing

® A testing strategy by which

- Existing tests are run against modified code

« Checks whether code changes break anything that worked prior to the change

- Write new tests only where necessary

This is how the LArSoft testing system is designed to work

June 3, 2015 Introduction to LArSoft CI system

LArSoft tests

® Tests within the LArSoft context

- Any command / script / program that:

» tests some piece of code

« exits with 0 when the test passes, or a non-zero value when the test fails

- Unit tests
e Utilizes 'make test' during the build procedure
« Configured via CMakelLlsts.txt files
e Tests run prior to mrb install phase
- Integration tests
 Tests run by LArSoft Cl system scripts
« Configured via text files under the test sub-directory of each repository

e Test run after mrb install phase

June 3, 2015 Introduction to LArSoft CI system

10

LArSoft testing objectives

e Maintain a capability to:

Identify major problems before each individual integration or soon after

* Support “continuous integration” (Cl)

« “Major” = build failures, detector interoperability, crashes, missing functionality,
data file backward compatibility

Track changes in computing performance metrics over time

 E.qg, identify unexpected changes in CPU performance or memory usage

Ensure that develop branch always builds and runs

Ensure that code tagged for release operates as expected prior to release

» Contributes to release validation to some extent - a much larger topic than Cli

June 3, 2015 Introduction to LArSoft CI system 11

LArSoft testing objectives

® Provide a framework, automated tools that make testing easy

Simple: tests can be arbitrary scripts or use built-in features of the system
Easily configurable: configuration files in source code

Flexible: can aggregate tests, create workflows of dependent tests, etc.
Conveniently monitored: view results in layers of detail via web GUI

Manageable: scripts + http interface for initiating tests
« Many ways to trigger tests
User friendly: e.g., can run everything or parts of the system locally

« Anywhere LArSoft is installed

June 3, 2015 Introduction to LArSoft CI system

12

June 3, 2015

The LArSoft CI system

Introduction to LArSoft CI system

13

LArSoft Cl system

® Five major components

The Central Build Service
Results database / web server
Server-side driver software
Client-side driver software

Monitoring/reporting software
« Web GUI interface

See https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki

June 3, 2015 Introduction to LArSoft CI system

14

https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki

LArSoft Cl system

® Five major components ~— Operated by Fermilab

- The Central Build Service

- Results database / web server “

- Server-side driver software <«

_ Client-side driver software =« Written, maintained by LArSoft

- Monitoring/reporting software 4
« Web GUI interface

See https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki

June 3, 2015 Introduction to LArSoft CI system

https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki

Cl system

| Fermilab Central Build Service
| Build server Build slaves
| SL6
o
| | * Jenkins : el
, server appl .
N ; :
| : : OSX Maverick
| ‘ Jenkins client
| .
I 0OSX Yosemite
I ' Jenkins client ’
e e

Off-site build slaves

Site A, node 1

| ek it ==y
. Jenkins client |

-

Site A, node 1

. Jenkins client ;
L] L]

overview

Database
for test
status, results

: Test reporting *
, web interface |

3

16

Cl system overview

—————————————— “ -
| Fermilab Central Build Service | At least on build slave
W —— for each supported OS
| 6
||+ 3enans "7 | Jerkingcini |

: server appl : . Detabase

| : ' . for test
I : ; OSX Maverick status, results
I -------- Jenklns cllent * Ti
|
|
|

|
/ . | : Test reporting :
/ OSX Yosemite ' u:e_b_lnt_er-fa_ca_ 3
Jenklns cllent | ‘
oo Lummem |
& ,L _____________
Off-site build slaves
Srle A node1
. . . Jenklns cllent
Jenkins Cl applicaton ~ —= S Y
* Runs generic “test jobs”, - Q
aka “builds” SrleA node1
» Dispatches jobs to build .:’Fl’l‘i‘."f.“:"fi’,“.u_ — _
slaves " Build slaves can be

located anywhere.

Cl system overview

Arguments in trigger

! Test reporting *

http i specify run-time
99er | Fermilab Central Build Service I configuration options
| P Build slaves I * The release to use
I SL6 * The branch to build
| ke Jenkins clent -; I e The “test su_lte to run
' server appl . | (more on this Iater)
| ' . = Database . Oth fi
- | for test er options
OSX Maverick status, results
! Jenkins client ; I ﬂ
|
I
I
I

OSX Yosemite :_v:e_b_int_er-fa_ce _:
: Jenkins clent ! %
Off-site build slaves
. . Site A, node 1
Test job launched in e
response to http trigger R : Y
» Starts LArSoft server- : Q
side test driver process Site A, node 1 -
Jenkins client ;

18

Cl system overview

Server dispatches

-------------- “ L] - L]
Fermilab Central Build Service | LArSoft client S'(_je driver
, Bl slaves processes to build slaves
Build server I
SL6
Joking Clertsidoarver | |
. SSrver appl : I Database
g : Server-side - | for test
i A OSX Maverick status, results
- M : Client-side driver | Ti
: I - -.mmm = ow g
. | ! Test reporting *
SX Yosemite s Web interface ,
: Client-side driver : | y
I
e e e e oo e el e e s o s s ows
Off-site build slaves
ite A, node 1
: Client-side driver v

Cl system overview

Drivers report status,

______________ -
Fermilab Central Build Service | progress, test results,
. Build slaves test |OgS, etc., to DB
Build server I
S8 e
 Jorkins 4 | Gient.ide ariver {___ |
: serverappl : : Database
1 i Server-side ;1 . for test
' E-.d.”.‘f?r_ : '. 0OSX Maverick status, results
— ; Cliot-sde river | N,

: Client-side driver : X
e B .
Real-time test status,
Off-site build slaves
progress, and results
Site A, node 1) .)
roetoee e viewable via web GUI
: Client-side driver | .
------------------- : Y running on DB node.

20

The default test workflow

T eneckout A LArSoft script runs in
_________ T (mrb gitCheckout) each step of the workflow

-al Build Service

Build slaves I ¢ . .
o . . The workflow terminates if
[Gientsido arver] | i)~ any step exits with a non-
X ¢ Database zero return value
| for test
status, results
Unit test T¢
(mrb test)
Runs through all tests : 'T'e-st-r;;;OTtag; :
Reports resu!ts at end : web interface :
¢ A
Note: ('ﬂr?,tifs'!a..)_ / The reporting system
* The workflow itself is ¢ displays the status of
configurable each step according to

(lar-ciftest-runner ...)

A v iy Y the return value
) Trlgger parameter SpeCIerS . Runs through all tests
Wh|Ch Workﬂow to run Reports after each test

21

Test monitoring and reports

® Status of running test jobs and results of completed test jobs

- http://lar-ci-history.fnal.gov:8080/LarCl/app/view_builds/index

22

http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

Top level Cl reporting page

http://lar-ci-history.fnal.gov:8080/LarCl/app/view_builds/index

Multiplatform continuous integration for LarSoft

Build

lar_ci_beta/975

lar_ci_beta/974

lar_ci_beta/973
lar_ci_beta /972
lar_ci_beta /971
lar_ci_beta/970

lar_ci_beta/969

\
|ar_ci_beta/\§58
\
\
\
|ar_ci_beta19§?

K \
{
\

-
\

Start Time

2015-05-28 15:

2015-05-28 13:

2015-05-28 12:

2015-05-28 12:

2015-05-28 10:

2015-05-28 10:

2015-05-28 10:

2015-05-28 10:

2015-05-28 10:

2015-05-28 09:

2015-05-28 10:

2015-05-28 09:

2015-05-28 08:

2015-05-28 08:

2015-05-28 05:

2015-05-28 04:

2015-05-27 22:

2015-05-27 22:

33:12.326242

16:48.724249

42:09.216307

12:16.147093

55:56.917711

36:31.277539

40:04.516768

29:06.556705

04:55.678425

56:35.430691

02:19.242264

50:34.109738

54:28.136196

49:45,987074

04:07.973901

59:10.160351

25:56.456216

20:18.612398

Platform

Linux 2.6.32-504.8.1.el6.x86_64

Linux 2.6.32-504.8.1.el6.x86_64

Darwin 13.4.0

Linux 2.6.32-504.8.1.el6.x86_64

Darwin 13.4.0

Linux 2.6.32-504.8.1.el6.x86_64

Darwin 13.4.0

Linux 2.6.32-504.8.1.el6.x86_64

Darwin 13.4.0

Linux 2.6.32-504.8.1.el6.x86_64

Darwin 13.4.0

Linux 2.6.32-504.8.1.el6.x86_64

Darwin 13.4.0

Linux 2.6.32-504.8.1.el6.x86_64

Darwin 13.4.0

Linux 2.6.32-504.8.1.el6.x86_64

Darwin 13.4.0

Linux 2.6.32-504.8.1.el6.x86_64

Links to Jenkins page
for the job

checkout

©COCOOOOLOOEOEREOEOLOEOO6 66 ©

build

v

© 8 B R L LE S 606600 00O @

make_test

v
<

install

<
<

e © ¢

©©

<

Test phases

ci_tests Progress Legend
Q Running
= Pending
g Succeeded
. i Failed
- Skipped
-
w . .
9 Colors indicate
- status of phase
E 4
v

Boxes are links
to summary pages
for that phase

23

http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index

Unit test ("make_test”) summary page

~make_test o E6 Each point is a link to the top-level
e el g Cl reporting page with the selected
oy test instance listed at the top
Success
Stage make_test Runtime History
2400 M wall Clock
Time {
1,800 seconds)
1,200 o2l L I__'_
600 V
0 | > L
Mar 2015 Apr 2015 May 2015
Phase: make_test
. Total execution time (wall clock)
RN for unit test phase vs. test instance

) geometry iterator test

. Wire test

. donothing lbne35t

@ donothing simul lbne35t

. build oplib lbne35t

. geometry microboone

] cptical digi lbne3sSt

Links to result summary page
for specific unit tests

. Surf¥iTest

. gensingle
® timingreference_test
. EalmanFilterTest

f] testPhysicalConstants

] Bulkallocator test

. SurfX¥ZTest

24

@ geometry iterator uboone test

. LATest

Integration test (“ci_test”) summary page

& Tosts Tor ELB Same basic information and layout
Build lar_ci_beta/975, Trigger: git
push on develop branch

on EL6
status:
Failed
Stage ci_tests Runtime History
6,000 B Wall Clock
Time {
4,500 seconds)
3,000
1,500
0 ot - L gt
Mar 2015 Apr 2015 May 2015

Phase: ci_tests

ci tests

Started 2015-05-28 16:11:19.996761

This test failed

. lar ci openold detsim lbnecode

@ lar ci opencld detsim uboonecode 4

@ lar ei hitana g4 ubocnecede

. lar ci prodsingle lbnecode

lar ci hitana tinvana new uboonecode

These tests were skipped
because a pre-requisite test
(above) failed.

] lar oi hitana detsim_uboconecode

. lar ci prodgenie uboonecode

? lar ci hitana tinvana canonical uboonecode

@ lar ci hitana pred ubconeccde

. lar ci histocomp uboonecode

The reason is listed here

? lar ei hitana recoZD uboonecode

® lar ci prodsingle uboonecode

lar ci openold detsim3d uboonecode |

i reason: lar_ci_openold_detsim3d_uboonecode -- prereq lar_ci_openold_detsim2d_uboonecode failed)

lar ei opencld detsim2d ubcenecode (Skip reason: lar_ci_openold_detsim2d_uboonecode -- prereq lar_ci_opencid_detsim_uboonecode failed a)

® lar ci_ opencld recc_lbnecode 25

Finished 2015-05-28 17:12:38.099697
exit code: 4

Summary of test lar_ci_hitana_g4_uboonecode

lar_ci_hitana_g4_uboonecode on EL6
Build lar_ci_beta/975
Trigger: git push on develop branch

Failed
Success
Test lar_ci_hitana_g4_uboonecode Usage History
4.000 M Scaled CPU
(kVax sec)
3,000 B Max RSS (
2 000 10s of kb)
! Elapsed
Time (sec)
1,000
o E=
Mar 2015 Apr 2015 May 2015

Test: lar_ci_hitana_g4 uboonecode

m W Links to output created by the test
stderr

Started 2015-05-28 16:24:07.244806
exitcode

rusage user cpu

rusage scaled user cpu
rusage system cpu

rusage scaled system cpu
rusage elapsed

rusage %cpu

rusage avgtext

rusage avgdata

rusage maxrss

rusage inputs

rusage outputs

rusage major faults
rusage minor faults
rusage swaps

max moduletimesrns

min moduletimesrns

avg moduletimescns
max moduletimeslargeant

min moduletimeslargeant

avg moduletimeslargeant

max moduletimesmcreco

0

465.610000
2607.048168
0.770000
4.311392
466.810000
99.000000
0.000000
0.000000
2914704.000000
880.000000
189632.000000
0.000000
162258.000000
0.000000
0.00554585
0.000252962
0.00047065615
25.6057
3.87427
10.1806505
2.19556

v2.0 display for this test

v2.1.2 will have all times for a given module on
a single line.

+ Plot will show times for each module

26

Summary of test lar_ci_histcomp _uboonecode

lar_ci_histocomp_uboonecode on EL6
Build lar_ci_beta/980
Trigger: git push on develop branch
Fai

ailed
Failed
Test lar_ci_histocomp_uboonecode Usage History
240 M Scaled CPU
(kVax sec)
180 B Max RSS (
10s of kb)
120 Elapsed
50) ot ——3 IL_-ZJ&';- —p—h—k .,A.»',;_r“ Time (sec)
o | \Y) ’
Mar 2015 Apr 2015 May 2015 Jun 2015 .
Plot image(s) created
by the test job
Test: lar_ci_histocomp_uboonecode Comment :
stdout hits1
N hits on first plane

stderr PROB=0.52363268
histcomp s
Started 2015-05-30 02:11:37.214453 '4:_
min histo compare prob 0.04147194 12:—
exitcode 256 " =
rusage_user_cpu 9.550000 -
rusage_scaled_user cpu 53.472456 B}
rusage_system cpu 2.190000 6 i
rusage scaled system cpu 12.262270 E
rusage elapsed 29.620000 4 :—
rusage %cpu 39.000000 2=
rusage_avgtext 0.000000 E(} ,1 e
rusage avgdata 0.000000 1.53
rusage_maxrss 724656.000000 E
rusage inputs 0.000000 15
rusage outputs 15912.000000 0.5 ;
rusage_major_faults 0000000 O~ ""f00 200 300 400 500 600 700 _ 800 900 1000
rusage minor faults 287837.000000
rusage swaps 0.000000 2 7
z;ﬁs:zgefcﬁaua-ao 02:14:12.010359 Comment :

June 3, 2015

Configuring and running tests

Introduction to LArSoft CI system

28

Integration test configuration

e Defined in INI-formatted configuration files

- Python config library rules

- Live in the source repositories: <repo>/test/ci/ci_test.cfg file
® Two types of sections within the file

- Test definition (keyword = test)

» Specifies the command and arguments to run for the test

« Files to copy in prior to the test, out after the test command
- e.g., input data for test + reference data for comparison of result

e Tests that must be run first
« Various checks to perform

- Test suite definition (keyword = suite)

» Specifies a collection of tests to run as a unit in a single test job

- The test suite is specified as a trigger argument

 Dependencies taken into account, run in the correct order
29

Integration test configuration file

More information at https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_Runner_Introduction

e Basic layout for ci_tests.cfg file
Simple ci_tests.cfg file

s # Definition for a named 'testA' that uses the output from 'testB'
Test definition blocks > [testtestA]
script=$<PRODUCT>_DIR/test/testA.sh
args=-a qualA -b qualB
requires= testB

\ \ # Definition for 'testB'
\ [test testB]
\ script=$<PRODUCT>_DIR/test/testB.sh

Definition for 'testC”
o [test testC]
Test suite definition script = $PRODUCT_DIR/test/testC.sh

(can be more than one)

Definition of test suite 'test_suiteA' 30
[suite test_suiteA]
testlist = testA testC

Integration test configuration file

More information at https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_Runner_Introduction

e Basic layout for ci_tests.cfg file

Simple ci_tests.cfg file

Definition for a named 'testA' that uses the output from 'testB'
[test testA]
script=$<PRODUCT>_DIR/test/testA.sh
args=-a qualA -b qualB
» requires= testB

Creates dependency

between tests # Definition for 'testB'’

[test testB]
Pre-requisites will be script=$<PRODUCT>_DIR/test/testB.sh
run first

Definition for 'testC”
_ . [test testC]
In this case, 'testB' will be script = $PRODUCT_DIR/test/testC.sh

run as part of the suite
due to declared dependency

above # Definition of test suite ‘test_suiteA’ 31
[suite test_suiteA]

testlist = testA testC

Integration test configuration file

More information at https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_Runner_Introduction

® Test section keywords

e script = <command name> [required!!]
- The command to run. Fully qualified path or relative to directory with
e args = <argument list>
* requires = <test name 1> [<test name 2> [...]]
- Pre-requisite tests will be run before dependent tests
* Cpu_usage _range = <low value>:<high value>
- Test fails if CPU time exceeds the range on either end
« mem_usage _range = <low value>:<high value>
- Test fails if memory usage exceeds the range on either end
- NOTE: currently limited to the maximum for any test run, not a specific test...
¢ outputN = <filename N>
- File sanity checks for N=[1...9]: exists, more than 5 bytes, *.root files start with 'root'
« check histograms = <root hist file A> <root hist file B> <min K-S prob value>
- Runs K-S test on histograms with same name. Test fails if any K-S prob < specified min
- Produces web page with histogram overlays and K-S probability values
e parse_art output = True

- Reads art log files, parses various usage and statistics messages

Sample Test scheduling

i
[test A]
[test B] How the tests will be run:
requires=A
A D G H
[test C]
requires=B
[test D] o B = Dependent tests create
ftest E] E l a serial workflow within
requires=D the suite
[test F] c « Basic acyclic dependency
requires=C E \ graphs supported
Independent tests run
[test G] 3 in parallel
[test H] |
[suite my_suite] 33

testlist=ABCDEFGH

How to add a new integration test

® The basic steps

- Write a command, program, or a fcl file for 'lar' that returns O when passed

 Any non-zero value if the test fails for any reason

- Add a new test section to the appropriate ci_tests.cfg file

- Add the newly added test to a test suite

Will discuss running the test in a bit...

34

Unit test configuration

e Defined in CMakelists.txt files
- Can be defined in any CMakelLists.txt file

- By convention, prefer <repo>/test/<package name>/CMakeLists.txt

» Tests apply to code in <repo>/<package name>

e Configuring tests

cet_test macro in cetbuildtools/Modules/CetTest.cmake

Basic usage: cet test(target [<options>] [<args>] [<data-files])

 “Target” = test name reported to the system
- Does not need to be the command executed

Options, arguments well documented in the source code

https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/repository/revisions/master/entry/Modules/CetTest.cmake

June 3, 2015 Introduction to LArSoft CI system 35

https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/repository/revisions/master/entry/Modules/CetTest.cmake

Unit test configuration

e Examples from LArSoft and experiment repositories

- From larcore/test/SimpleTypesAndConstants/CMakelLists.txt

cet_test(testPhysicalConstants)

« Builds larcore/test/SimpleTypesAndConstants/testPhysicalConstants, then runs it

- From uboonecode/test/Geometry/CMakelLists.txt

cet_test(geometry_microboone HANDBUILT
DATATFILES test_geometry_interators.fcl
TEST_EXEC lar
TEST_ARGS —-rethrow-all -config ./test_geometry_iterators_uboone.fcl

)

« The “HANDBUILT” option prevents cet_test from attempting to build
“geoemtry_microboone” (just a name)

 Runs “lar --rethrow-all --config ./test_geometry_uboone.fcl”

- Most existing “unit tests” are of this form. Are these really “unit tests”?

36

Unit test configuration

® Some important keywords

- Options
« HANDBUILT: do not build the target (which is typically just a name anyway)
« NO _AUTO: do not add to “auto test” list

- Arguments
« TEST EXEC
- The executable to run if different from the “target” name. (Must also specify HANDBUILT)
« TEST ARGS
- Arguments passed to the test to be run
« REF

- Standard output captured and compared to the specified reference file
« OPTIONAL_GROUPS

- Assigns the test to the listed “test groups”
- “Test groups” are equivalent to, but distinct from “test suites”
- Can be run by setting -DCET_TEST _GROUPS <group name> on cmake command line

37

Running tests

e Two methods to run integration tests

- Trigger test jobs on the central build service

* All code must be pushed to central repository first
« By default, “git push origin develop” triggers a build

« Can trigger manually with a script that allows code on non-develop branches to
be tested

- Can specify which branch to use repository-by-repository
* View results on reporting web page:
- http://lar-ci-history.fnal.gov:8080/LarCl/app/view_builds/index

- Running tests locally
See https://cdcvs.fhal.gov/redmine/projects/lar-ci/wiki/Test_runner_introduction for details

 In a working directory

setup <software version to be tested>
setup lar_ci
test_runner <test1l> <test2> ...

« Summary of results printed to stdout

38

http://lar-ci-history.fnal.gov:8080/LarCI/app/view_builds/index
https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki/Test_runner_introduction

June 3, 2015

Work session

Introduction to LArSoft CI system

39

LArSoft test strategy

® Questions about current test suite

Are the tests fast enough?

« Takes about 2 hours to run the suite on Linux build slaves

« Too slow for most people to pay attention to for pre or post commit testing

Is the rate of false positives manageable?

 For example, almost all recent test jobs have “failed” status
« Typically the problem is that the test breaks, not the code being tested

Test coverage?

 Are we adequately checking all important code, stages?

- Even if algorithms run, do we always check that the appropriate output is there?
« Are we testing each of 35T, uBooNE, LArIAT, SBND, ArgoNeuT sufficiently well?

Do we have tests well matched to the questions at hand?

« Every-commit questions are not the same ones we need to check new releases
 But we have only one test suite
June 3, 2015 Introduction to LArSoft CI system

40

LArSoft test strategy

® Propose a tiered testing strateqgy (for unit and integration tests)

- On each individual integration (i.e on each push to central repository)

« Completeness less important than duration.
- No more than 10-15 minutes?
« Focus on identifying “major” problems only.

- Build failures, detector interoperability, crashes, missing functionality, can't read old
data, can't read new data

* Highly managed suite of tests
- Once daily / nightly tests
 Focus on finding more subtle problems
* Needs to be more complete, but time still matters.
- Before / after every release (for at least production releases)
« Completeness is more important that speed

* Possibly physics validation-like tests?

* Less managed suite of tests

® | ow rate of false positives is critical in all cases

41

What we have now

e geometry_iterator_test

e Wire_test

e donothing_Ibne35t

e donothing_simul_Ibne35t

e build_oplib_Ibne35t

e geometry_microboone

e optical_digi_|bne35t

e SurfYZTest

e gensingle

e timingreference_test

e KalmanFilterTest

e testPhysicalConstants

e BulkAllocator_test

e SurfXYZTest

e geometry_iterator_uboone_test
o | ATest

e geometry_test

e sparse_vector_test

e geometry_iterator_dunefd_test
e optical_sim_Ibne35t

e geometry_|bne35t

e PropTest

e SimpleFits_test

e geometry_iterator_loop_uboone_test
e optical_reco_lbne35t

e geometry_dune35t_test

e prodsingle_uboone_max2

e geometry_iterator_loop_dunefd_test
e GausFitCache test

Current unit tests

e geometry_lbnefd . .
e geometry_iterator loop, test Total time: almost 30 min!!
e donothing_simul_lbnefd About 60 tests

e donothing_lbnefd Vast majority are 'lar' jobs
e TrackTest

e geometry uboone_test

e RawDigit_test

e Nestedlterator_test

e CountersMap_test

e geometry iterator_loop_ dune35t_test

e StatCollector_test

e OpFlashAlg_test

e geometry_iterator

e Cluster_test

e geo_types_test

e geometry_iterator_dune35t_test

e geometry

e HitAnaAlg_test

e GeneratedEventTimestamp_test2

e AlgoThreshold_test

e geometry_dunefd_test

e donothing

e FastMatrixMath_test

e Hit_test

e Dereference test

e GeneratedEventTimestamp_test1 1

e raw_test

e test fcl.sh

e GeneratedEventTimestamp _test1 2 42

What we have now

e lar_ci_openold _detsim_Ibnecode

e lar_ci_openold_detsim_uboonecode

e lar_ci_hitana_g4 uboonecode

e lar_ci_prodsingle Ibnecode

e lar_ci_hitana_tinyana_new_uboonecode
e lar_ci_hitana_detsim_uboonecode

e lar_ci_prodgenie _uboonecode

e lar_ci_hitana_tinyana_canonical_uboonecode
e lar_ci_hitana_prod_uboonecode

e lar_ci_histocomp_uboonecode

e lar_ci_hitana_reco2D uboonecode

e lar_ci_prodsingle uboonecode

e lar_ci_openold_detsim3d_uboonecode
e lar_ci_openold_detsim2d_uboonecode
e lar_ci_openold reco_lbnecode

Current integration tests

Total time: about 1 hour

(excludes the two tests that did not run)

15 tests

43

The task at hand

® Define test use cases, create a suite for each
® Set target run times for each use case / test suite

® Define specific tests to be run in each
- What needs to be tested?

- How it should be checked in a way that avoids / minimize false positives?

- Does it run fast enough for the use case?

June 3, 2015 Introduction to LArSoft CI system

44

June 3, 2015

Backup

Introduction to LArSoft CI system

45

Continuous integration

e \What is continuous integration (Cl)?

A software development practice in which team members integrate their

work into the main development branch frequently, usually at least daily.
Source: an amalgam of quotes from a search on “continuous integration definition”

Each integration is tested by an automated build and test system designed
to detect integration errors as quickly as possible

At odds with our “managed integration” approach of using Coordination
Meetings to decide what gets merged and when?

* No... explain

® Benefits

Low-cost method that catches problems quickly
Maintain more stable main-line development branch
Can create a release with known properties quickly

Low cost

June 3, 2015 Introduction to LArSoft CI system

46

Cl system components

® (Central Build Service
https://buildmaster.fnal.gov/

- Server plus distributed build slave nodes
« One or more slave nodes per OS to be supported
« Slave nodes can be off-site

- Jenkins Cl application

* Server-side application

- The application runs “test jobs”, aka “builds”, in response to http-based triggers
- Arguments in trigger specify run-time configuration options

e.qg., the release, the test suite to run, the branches to use, etc
More on triggers later

® Results database / reporting web server

- Used to store test job status, results of individual tests.

- Web server hosts monitoring and reporting GUI

June 3, 2015 Introduction to LArSoft CI system

47

Cl system components

® (Client-side driver software
(The lar-ci product)

- Runs on the build slaves

- Processes a workflow with a number of steps, or “phases”

« The number of phases and the actions in each is configurable by Cl admins

« The specific workflow to run is specified as a trigger argument

g ~— Twotestphases
/ in the default workflow

* 5 phases: checkout, build, unit test,fr’igtxéll, integration test

* Non-zero exit status at any step terminates workflow.

June 3, 2015 Introduction to LArSoft CI system 48

Cl system components

® Test monitoring and results viewer
(The lar-ci-reporting product)

- Extracts and presents test status, results from the database
« http://lar-ci-history.fnal.gov:8080/LarCl/app/view_builds/index
- Increasing levels of detail exposed via drill-down links on each page
« Top level summary, which leads to...
 Test phase summary, which leads to...
* Single test result page, which leads to...
 Low-level output and results

- Plots of test times at the top of some pages

Test phase summary: elapsed time required for the phase over time

Single test result page: elapsed time required for that test over time, maximum
memory usage for the test over time

June 3, 2015 Introduction to LArSoft CI system 49

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

