
Soon Yung Jun (Fermilab, SCD/Physics and Detector Simulation Group)
LArSoft Tools and Technology Workshop
20 June 2017, Fermilab

Profiling Tutorial

Debugging is finally done! Ready for a test drive?

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop2

My program runs, but seems very slow …

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop3

CPU
Throughput

Instruction	stall

Memory
Latency

Cache	misses

I/O
Communication
DB	contention

Multithreading
Load	balancing
Scalability

Where to start?

Typical Software
Development
Cycle

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop4

Coding

DebuggingTuning

Design
Algorithm

Testing
Validation

Profiling
Optimization

• PART-I
– A brief introduction to computing performance profiling
– An overview of selected profiling tools and examples

• PART-II
– Profiling results of the LArTest application with IgProf and

Open|Speedshop
• Demos and Questions

This Tutorial

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop5

Introduction to Computing Performance Profiling
Overview of Selected Profiling Tools and Examples

PART-I

• Free lunch is over as modern hardware architectures are
getting more complex and parallel

• HEP applications are usually complicated too
• Every $/Watt matters (computing with a limited budget)
• Understanding the code performance is responsibility of the

software developer
• Maximize CPU flop rate and minimize memory operations

(balancing them is not an easy task)

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop7

Why Profile?
Performance tuning is an essential part of the development cycle

• Performance benchmarking quantifies usage/changes of
CPU time and memory (amount required or churn)

• Performance profiling analyzes
– Hot spots, bottlenecks and efficient utilization of resources
– Code efficiency (instruction/cycle, latencies, I/O and etc.)

• Identifying opportunities for optimization

Computing Performance Profiling and Analysis

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop8

Low Hanging Fruit After Production

Tools

• Hardware platform (processors) popularly used in HEP
– CISC (x86), RISC (ARM), MIC, GPU(SIMT), FPGA

• Speed: cycle vs. frequency
– cycle time = 1/(clock frequency)
– 2.0 GHz = 0.5 ns per cycle
– CPU Time = Σ(number of clock cycles)/frequency

• Memory: latency vs. bandwidth
– latency: the time interval between the request for information

and the access (to the first bit of that information)
– Bandwidth: the number of bits per second

• Throughput vs. locality: CPI, MIPS, FLOPS, FMO
• Pipelining: instruction throughput, data dependency, ILP, …

Understanding Computer Performance

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop9

• Q1: Which operation takes more cycles?
1. Integer division
2. Double division
3. Function call
4. static_cast<int>(double)

• Strategies
– Do not mix data type
– Avoid unnecessary divisions and function calls in the inner

most loop

Understanding CPU Performance

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop10

• Memory hierarchy
– Registers
– Cache (L1/L2)
– DRAM (rss)
– Virtual (vsize)
– Secondary storage

• Caching
– Spatial locality (data storage, coalescence)
– Temporal locality (data reusability in near future)
– Replacement polices
– TLB (translation look-aside buffer, the most recent page access)

Understanding Memory Transaction

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop11

Register

Cache	
(L1,L2,L3)

Main	Memory	 (RAM)

(Virtual	Memory)
Secondary	Storage	(Hard	Disk)

TLB

page	fault

• Example of memory accesses scenarios

• Do not over-optimize by yourself, but rely on profiling first

Understanding Memory Transaction

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop12

• Q2: Which ratio is the biggest in memory access?
1. L1 Cache/Register
2. L2 Cache/L1 Cache
3. RAM/L2 Cache
4. Virtual Memory/RAM

• Strategies
– Try to fit everything in RAM
– Try to fit essential calculations in cache

Understanding Memory Performance

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop13

• Program segments:
– Code
– Stack (program)
– Heap

• Collecting program events
– Hardware interrupts
– Code instrumentation
– Instruction set simulation
– Tracing (when)

• Periodic sampling
– Top of the stack (exclusive)
– Anywhere in the stack (inclusive)

Basic Concepts of Performance Profilers

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop14

• Instrumentation: inserts extra code at each function call to
count how many times the function is called and how much
time it takes.

• Sampling: The profiler tells the operating system to generate
an interrupt and counts how many times an interrupt occurs
in each part of the program
– no modification of the program
– time-based
– event-based

• Debugging tools: The profiler inserts temporary debug
breakpoints at every function or every code line (valgrind)

Classification of Profilers by Techniques used

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop15

• Basic OS tools:
– gprop/perf
– cachegrind/callgrind

• Hardware counter
• PAPI and tools set

• Vendor tools
– Intel VTune Amplifier XE,

Inspector, Advisor, ITAC
– AMD CodeAnalyst
– Allinea (map and DDD)

• ASCR tools (Open source)
– HPCToolkit (Rice Univ.)
– TAU (Oregon Univ.)
– Open|Speedshop (Krell)

• HEP
– FAST (FNAL)
– IgProf
– Gooda

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop16

Examples of Profilers

• Compile your program with gcc using –pg flag
• Run your program (as usual) – will produce gmon.out
• Run gprof
Øwget https://g4cpt.fnal.gov/g4p/demos/demo.cc
Øg++ -pg demo.cc -o demo
Ø time ./demo
Øgprof ./demo

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop17

gprof: demo

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
36.49 0.51 0.51 1 514.51 514.51 Function_C()
34.34 1.00 0.48 1 484.25 998.76 Function_B()
30.05 1.42 0.42 1 423.72 423.72 Function_A()
0.00 1.42 0.00 1 0.00 0.00 global constructors keyed to _Z10Function_Cv
0.00 1.42 0.00 1 0.00 0.00 __static_initialization_and_destruction_0(int, int)

• A standard API to access
hardware performance
counters

• Relation between software
performance and processor
events

• Event metrics
– FLOPS, Load/Store
– cache hit/miss, TLB miss
– power consumption (MuMMI)
– platform specific metrics

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop18

PAPI (Performance API)

• Operating systems support both non-derived and derived
PAPI presets: papi_avail –a for listing

• A list of some possible hardware counter combinations

Hardware Counters

19 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Typically unmodified binary and call stack analysis
• Code centric view, GUI and text-based flat profile

Example of Sampling Tools and Workflow:
HPCToolkit

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop20

• Dynamic, compiler based, source based Instrumentation
• Analysis tools

– ParaProf
– PerfExplorer
– Tracer (Jumpshot, vampir)

• Various built-in graphical tools
• Dis/advantage: compiler/source-based instrumentation

Example of Integrated Tools:
TAU (Tuning Analysis Utilities)

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop21

• Q3: What are the disadvantages of sampling profilers?
1. Sampling uncertainty (à statistical analysis with repetition)
2. Non-Reproducibility (à use definitive tools)
3. Interference from other processes (à standalone nodes)
4. Jumping between cores (à setting NUMA affinity, pinning)
5. All of above

• Strategies
– Understand your program first (intensity: arithmetic vs. memory)
– Overview with sampling experiments
– Focus on critical parts of code: Rule of 80:20
– Detailed optimization with hardware counter experiments
– Benchmarking and monitoring of every minor/major update

Understanding Sampling Profilers

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop22

Profiling Results of LArTest with IgProf and Open|Speedshop

PART-II

• A standalone Geant4 application (developed by H. Wenzel)
– Cubic (5mx5mx5m) LAr fiducial volume
– GDML to assign step limits and sensitive detector to volumes
– Optical (scintillation) photons produced in sensitive detector

• Computing performance monitoring features
– Event time
– Memory (IgProf, statm)
– Statistics of the number for tracks/steps per particle type

• Profiling examples with IgProf and Open|Speedshop

(more information at https://g4cpt.fnal.gov/g4p/prplots/cpu_by_version.html)

Application for this Tutorial: LArTest

24 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Installation: http://igprof.org/install.html
• Implementation

• Running igprof on your application (-mp: memory profiling)
http://igprof.org/running.html

• Analysis (web-navigable version of the report, -r for $mode)

– ${mode} = MEM_LIVE, MEM_MAX, MEM_TOTAL

6/20/1725

Installing and Running IgProf

if (void *sym = dlsym(0, "igprof_dump_now")) {
dump_ = __extension__ (void(*)(const char *)) sym;

} else { /* message */ ; }

igprof -d -mp -z -o ${IG_OUT} $exe {args…}

cmd=“igprof-analyse --sqlite -d -v -g –r”
$cmd ${mode} ${IG_OUT} | sqlite3 out.sql3

• Snapshot live memory on the heap (for every N-events)

• Performance report formats
– ascii text (flat file)
– sqlite database files

• Demo for the web-navigable report
https://g4cpt.fnal.gov/g4p/oss_10.3.r04_lArTest_01/index_igprof.html

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop26

IgProf

if (dump_ && evt->GetEventID() % 25 == 0) {
sprintf(outfile,"|gzip -9c > IgProf.%d.gz",evt->GetEventID()+1);
dump_(outfile);

}

cmd=“igprof-analyse --sqlite -d -v -g –r”
$cmd ${mode} -b out1.gz --diff-mode out2.gz| sqlite3 diff.sql3

LArTest: IgProf (TOTAL MEM)

27 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Q4: How to improve performance of this function? Avoid …

1. String comparison
2. String conversion
3. String search (find)
4. Race condition (map)

Hint from IgProf

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop28

• Comprehensive performance analysis of sequential,
multithreaded, and MPI applications

• Open source (the Krell institute, https://openspeedshop.org)
and one of ASCR profiling tools

• The base functionality includes
– Sampling experiment (light-weighted)
– Support call stack analysis
– Hardware performance (PAPI) counters
– Multi-threaded, MPI profiling and tracing
– Memory function tracing, I/O profiling and tracing, etc…

• Tested on a variety of Linux clusters and supports parallel
hardware architectures (Intel MIC, NVIDIA CUDA) as well as
HPC systems (Cray, Blue Gene)

(more information at https://g4cpt.fnal.gov/g4p/prplots/cpu_by_version.html)

Introduction to Open|Speedshop (OSS)

29 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

● Installation: a typical build (with the version 2.2)

● Running an experiment: unmodified binary instrumentation

● Performance analysis: command-line (-cli) or GUI (-f)

OSS: Installation and Performance Measurement

30

./install-tool	--build-krell-root	
--krell-root-prefix		${install_dir}/krellroot_v2.2	
--with-openmpi /usr/local/openmpi-1.8.1	

./install-tool	--build-offline	
--openss-prefix	${install_dir}/openspeedshop2.2
--krell-root-prefix	${install_dir}/krellroot_v2.2	
--with-openmpi /usr/local/openmpi-1.8.1

osspcsamp "lArTest lArBox.gdml profile.pi-5GeV”		[frequency]		

openss -cli	lArTest-pcsamp.openss

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop31

Demo: OSS Command-line Analysis (-cli)

OSS (GUI): Default View and Statistical Panel

32

Toolbars Top Functions

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• pcsamp (periodic sampling of program counters)
– low overhead overview of time distribution

• usertime (call path profiling)
– inclusive and exclusive timing data
– call paths, caller and callee relationships

• hwcsamp (periodic sampling hardware counters)
– profiling of hardware counter events (PAPI events)

• pthreads (POSIX thread tracing)
• mem (memory tracing)

– call paths of memory related function call events
– aggregate and individual rank, thread, or processing times

• io (I/O tracing)
• Many other useful experiments

Sampling Experiments in OSS

33 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• pcsamp: exclusive time - insensitive to sampling frequency
(default 100Hz)

• usertime: inclusive time and call paths – large overhead
(default 35): similar overhead for hwcsamp

OSS: Measurement Overheads and Output Size

34 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• LArTest configuration
– Beam: 5 GeV pi-
– Step limit: 0.01 cm
– Physics list: FTFP_BERT (uses standard EM)
– 1000 events

• osspcsamp (100 Hz)
– I/O (digitization) ON
– Analysis ON

• ossusertime and osshwcsamp (35 Hz)
– I/O (digitization) OFF
– Analysis OFF

Preliminary Performance Experiments with LArTest

35 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Exclusive CPU time - an overall performance view
osspcsamp : Functions

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Select statement level granularity
• List line numbers in program that took most of time

osspcsamp: Statements (Line Numbers)

37 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• The library in which the associated function is located
(aggregated by shared objects)

osspcsamp: Linked Objects

38 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Function calls observed anywhere in the stack
• The inclusive time taken by the function and all its callees

ossusertime: Call Path (Functions)

39 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Relationship between caller and callee
• The paths through the application that take the most time

ossusertime: Hot Call Path

40 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Exclusive time on highlighted lines that indicate relatively high
CPU times

ossusertime: Hot Call (Source)

41 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Periodic sampling of hardware counters (hwcsamp)
• Supports both derived and non-derived PAPI presets
• Metrics for instructions, FLOPS, memory and resource patterns

…

Experiments with Hardware Counters

42 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

PAPI	hwc

• Derivatives: examples

• LArTest (Overall): 5 GeV pi- (Intel Xeon X5650@2.67GHz)
– IPC = 0.79 (relatively small)
– FMO = 0.32

Code Performance by Hardware Counter Metrics

S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop43

Hardware	Counter	
Metrics		Derivatives

Performance

IPC
(Instruction/Cycle)

Large	values	suggest	good	balance	with	
minimal	 stalls.

FPC
(FLOPS/Cycle)

Large	values	for	floating	point	 intensive	 code	
suggests	 efficient	 CPU	utilization	

FMO
(FLOPS/Memory Ops)

Good	data	locality, Computational	 Intensity	

LPC
(Loads/Cycle)

Useful	 for	calculating	 FMO,	may	indicate	
good	stride	through	arrays.	

SPC
(Stores/Cycle)

Useful	 for	calculating	 FMO,	may	indicate	
good	stride	through	arrays.	

6/20/17

• Flexible analysis options (GUI, command line, online)
• Export report data in different formats (text, cvs, chart)
• Multi-threading capability
• Compare two experiments (osscompare): examples

– two releases
– two experiments with the different numbers of threads

• Call path analysis based on DB
• Experiments for parallel code (MPI tracing)

Other useful OSS Features

44 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Monitor Geant4 part of performance changes for LAr-based
detectors by
– Beam energy/Particle type/Physics list
– Geant4 (reference) release
https://g4cpt.fnal.gov/g4p/oss_10.3.r04_lArTest_01/index_sprof.html
https://g4cpt.fnal.gov/g4p/oss_10.3.r04_lArTest_01/index_igprof.html

Demo: Example of Performance Profiling Report

45 6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop

• Performance profiling and analysis is an essential part of the
software development cycle
– Modern hardware architectures are demanding (parallelism)
– HEP applications are big and complex
– Profilers will helps to identify critical parts of code, monitor

changes of performance and provide opportunities of
optimization

• Where you can start:
– Try profiling your programs with basic tools
– IgProf: http://igprof.org/index.html
– Open|Speedshop: https://openspeedshop.org/
– HPCToolkits: http://hpctoolkit.org/index.html
– TAU: http://www.cs.uoregon.edu/research/tau/home.php

• Above tools are quite suitable for continuous integration tests

Summary

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop46

• CISC: Complicated instruction set computer)
• RISC: Reduced instruction set computer)
• ARM: Advanced RISC Machines
• CPI: Cycles per instruction
• IPC: Instructions per cycle
• MIPS: Million instructions per second
• FMO: Floating point operations per memory operation
• DRAM: Dynamic random-access memory
• ASCR: Advanced Scientific Computing Research
• MuMMI: Multiple Metrics Modeling Infrastructure

Acronym

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop47

• Q1:
• Q2:
• Q3:
• Q4:

Answer sheet

6/20/17 S.Y. Jun (SCD/PDS) | Profiling Tutorial | LArSoft Workshop48

