

Standard Model Tests with Nuclei and Energy Applications

Jerry Nolen, ANL and Guy Savard, ANL/Uof C (Standard Model)
Yousry Gohar, ANL and Shekhar Mishra, FNAL (Energy)

November 17, 2010

Joint Facility for Standard Model Tests with Nuclei and Energy Applications

- MW-scale CW proton beams can serve a variety of functions beyond those of traditional high energy physics research, such as:
 - Copious production of special short-lived isotopes to support fundamental searches for physics beyond the Standard Model using stopped beams
 - Materials irradiations and target developments in support of future energy applications, especially for nuclear fission power, fusion power, and transmutation technologies
- Examples of flagship experiments enabled by such a joint facility are covered in this presentation

Functional Layout of the Joint Facility at Project X

Schematic Layout of the Joint Facility at Project X

Project X: Source of Enhancer Isotopes

Discrete Fundamental Symmetries

Parity violation – First observation

C. S. Wu *et al.* (1957)

Electric Dipole Moment (EDM) Violates Both P and T

"The existence of an EDM can provide the "missing link" for explaining why the universe contains more matter than antimatter."

"The non-observation of EDMs to-date, thus provides tight restrictions to building theories beyond the Standard Model."

-- P5 report : The Particle Physics Roadmap (2006)

"A nonzero EDM would constitute a truly revolutionary discovery."
-- NSAC Long Range Plan (2007)

Search for EDM of ²²⁵Ra at Argonne

Oven: ²²⁵Ra (+Ba)

²²⁵Ra

Nuclear Spin = $\frac{1}{2}$ Electronic Spin = 0 $t_{\frac{1}{2}}$ = 15 days

Status and Outlook

- First atom trap of radium realized;
 Guest et al. Phys Rev Lett (2007)
- Search for EDM of ²²⁵Ra in 2011;
- Improvements will follow.

Why trap ²²⁵Ra atoms

- Large enhancement:EDM (Ra) / EDM (Hg) ~ 1,000
- Efficient use of the rare ²²⁵Ra atoms
- High electric field (> 100 kV/cm)
- Long coherence times (~ 100 s)
- Negligible "v x E" systematic effect

EDM search experiments are "portable"

²²⁵Ra EDM search apparatus under construction at Argonne

Search for ²²⁵Ra EDM at Project X

Present scheme

- 1 mCi ²²⁹Th source → 4 x 10⁷ s^{-1 225}Ra
- Upgrade path to 10 mCi
- Projected EDM sensitivity: $10^{-26} 10^{-27}$ e-cm
- Equivalent to 10⁻²⁸ 10⁻³⁰ e-cm for ¹⁹⁹Hg
- Current limit on ¹⁹⁹Hg: 2 x 10⁻²⁸ e-cm

Search for ²²⁵Ra EDM at Project X

- Project X yield: 1 x 10¹³ s^{-1 225}Ra
- Projected EDM sensitivity: 10⁻²⁸ e-cm
- Equivalent to 10⁻³⁰ 10⁻³¹ e-cm for ¹⁹⁹Hg
- Study systematics at 10⁻²⁹ e-cm for ²²⁵Ra

Supersymmetry (SUSY) and Electron EDM Bounds

Generic SUSY, with CPviolating phases, of order 1 and superpartner masses of order 100 GeV predict EDMs that exceed experimental bounds by 10².

EDM search probes energy scales beyond the LHC

Francium Atomic Fountain EDM

Electron EDM greatly enhanced in Fr due to relativistic effects

Goal: Discover or Rule Out Electron EDM as Small as 2 X 10⁻⁵¹ C•m (factor of 10³)

Experimenters

Benedict Feinberg (LBNL),
Harvey Gould (LBNL),
Juris Kalnins (LBNL),
David Kilcoyne (LBNL),
Charles Munger Jr., (SLAC)
Hiroshi Nishimura (LBNL),
Paul Vetter (LBNL)

Radon-EDM Experiment

TRIUMF E929 Spokesperson

T. Chupp (Univ of Michigan)
C. Svensson (Guelph)

Funding: NSF, DOE, NRC (TRIUMF), NSERC

- Produce rare ion radon beam
- Collect in cell with co-magnetometer
- Measure free precession
 (γ anisotropy or β asymmetry)

²²³Rn (23 min) EDM projected sensitivity

Facility	²²³ Rn Yield	S _d (100 d)
ISAC	$10^7 - 10^8 \text{ s}^{-1}$	10 ⁻²⁶ - 10 ⁻²⁷ e-cm
Project X	10 ¹¹ s ⁻¹	10 ⁻²⁸ e-cm

~ 10⁻³⁰ e-cm for ¹⁹⁹Hg

Project X: Target Spallation Production

Protons on thorium target: $1 \text{ mA} \times 1000 \text{ MeV} = 1 \text{ MW}$

Predicted yields of some important isotopes:

Radon: 219 Rn > $^{10^{14}}$ 223 Rn ~ $^{10^{11}}$ /s

Francium: 211 Fr $\sim 10^{13}$ 221 Fr $> 10^{14}$ 223 Fr $> 10^{12}$ /s

Radium: 223Ra >10¹⁴ 225Ra >10¹³/s

Actinium: $^{225-229}$ Ac > 10^{14} /s

Yields simulated by
I.C. Gomes using MCNPX,
Project X workshop,
October 2009

Project X will enable a new generation of symmetrytest experiments, and bring exciting opportunities for discovering physics beyond the Standard Model.

Technology of isotope production at 1 MW

- Existence proof at TRIUMF ISAC facility
 - ISAC has achieved stable operation at 500 MeV, 100 microamps, 100 microamps/cm² on carbide targets
 - Extrapolation to 10 cm² is feasible for thorium carbide
- Remote handling is essential but existing at other facilities
 - ISAC approach can be implemented with upgrade for actinides currently being implemented for 500 kW photo-fission at TRIUMF
 - MW-scale facilities in operation at SNS and JPARC
- High efficiency extraction feasible due to long half-lives of important isotopes
 - T_{1/2} ~days feasible by chemical separation
 - $T_{1/2}$ ~minutes feasible from hot carbides

Project X facility for Energy Applications

A Multi-Megawatt proton beam is

- a national resource,
- provides capabilities unparalleled in the world,
- with potential application far beyond high-energy physics
 Project X can help to meet the national need in two research
- A demonstration facility for Nuclear Energy:
 - Reliable acceleration operation
 - Transmutation of spent and processed nuclear fuel
 - Radiation capabilities that are required for the development of materials for advanced energy systems
- Development of advanced fuel cycles

thrusts:

National Needs in Advanced Energy Systems are Articulated in Numerous Recent Reports

- DOE/NE Report: Nuclear Energy Research and Development Roadmap
 - R&D on Transmutation Systems for Sustainable Fuel Cycle Options
 - R&D to develop fast-spectrum reactor technology
- DOE/HEP Report: Accelerators for America's Future
 - R&D on Accelerator-Driven Systems technology focusing on high-reliability linear accelerator and liquid-metal target technology

National Needs in Advanced Energy Systems in support of fusion energy development

- DOE/FES Report: Research Needs for Magnetic Fusion Energy Sciences
 - Thrust: Develop the material science and technology needed to harness fusion power
 - "Establish a fusion-relevant neutron source to enable accelerated evaluations of the effects of radiation-induced damage to materials"

Basic Target Experiments

Demonstrate and verify the following aspects of the neutron spallation target systems:

- Neutron yield, spectra, and spatial distribution.
- Control and recovery of the spallation products.
- Chemistry control of the lead bismuth eutectic or the liquid lead to protect the structural material.
- Thermal hydraulics parameters of the target design including the velocity and the temperature distributions, and the pressure drop.
- Structural material performance including radiation damage and liquid metal effects.
- Target operation and replacement procedures
- The operation and the maintenance of auxiliary systems

Brad Micklich, ANL Project X Workshop October, 2009

MCNPX Model - Target Neutron Production

- Proton energy varied from 0.75 to 10 GeV
- Target diameter 20 cm, length 200 cm; beam diameter 15 cm

Neutron Leakage Current vs. Incident Proton Energy

 At higher proton energies, peak neutron emission is lower, broader, and shifted downstream

Summary

- Flagship experiments to search for physics beyond the Standard Model
 - Search for static electric dipole moments in atoms and electrons
 (EDM) [Experiments are small and portable]
 - Requires high yields of radioactive isotopes of Rn, Fr, and Ra
 - Project X extends isotope yields by factors of 10²-10⁴ over existing facilities
- Provides MW-scale proton beams for essential target and materials developments in support of high priority national programs for future energy sources
 - Tests of materials for fission reactors and transmutation technologies
 - Evaluation of materials for fusion energy applications

