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Mo-va-ons	

•  A	protein	first	origin	of	life	model	might	resolve	
Eigen’s	paradox	(the	low	probability	of	randomly	
construc-ng	a	starter	“naked	gene”).	

•  Assume	ini-a-ng	event	is	the	forma-on	of	a	
network	of	interac-ng	molecules	assumed	to	be	
polymers	(but	not	necessarily	proteins).	

•  No	genome,	assume	it	comes	much	later.	
•  Unlike	previous	similar	models,	we	assume	here	
that	a	necessary	condi-on	for	a	prebio-c	
chemical	system	is	that	it	be	a	sta-onary	state	
out	of	chemical	equilibrium.	



Kauffman-like	Binary	Polymer	Model	
Network	Forma,on	
•  Liga-on	and	Scission:	

•  Given	a	maximum	polymer	length	value	(Lmax)	go	through	each	possible	
reac-on	of	the	form:	
	
and	include	it	in	the	network	with	probability	p.	
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Dynamics	
•  Combine	with	reac-on	rates	to	generate	ar-ficial	chemistry,	then	

stochas-cally	simulate	the	following	master	equa-on:	

•  Parameters	in	the	model:	p,	Lmax,	number	of	food	par-cles,	and	maximum	
number	of	par-cles.	

	

Kauffman,	The	Origins	of	Order	(Ch.	7)	



“The	Origins	of	Order”	–	Stuart	A.	Kauffman		

Lmax	=	8	

A	network	is	considered	
viable	if	it	is	possible	to	
go	from	the	food	set	to	
an	Lmax	molecule	via	
reac-ons.	



General	Structure	
p1	 p2	 p3	 …	

p1	Net	1	 p1	Net	2	 p1	Net	3	
…	

p1	Net	1	Run	1	 p1	Net	1	Run	2	 p1	Net	1	Run	3	 …	

For	different	p	values:	

Generate	mul-ple	
networks	(10	000)	per	
p	value,	check	if	they	
are	viable.	

•  Do	mul-ple	dynamic	simula-ons	(50)	with	random	ini-al	condi-ons	using	a	given	viable	
network	combined	with	reac-on	rates	un-l	a	steady	state	is	reached.	

•  Count	the	number	of	lifelike	steady	states	by	checking	if	the	system	is	out	of	equilibrium.	
•  We	now	have	a	measurement	for	the	probability	of	forming	a	lifelike	state	for	a	value	of	

pi,		Plifelike(pi).	

Network		
		Forma-on:	

Dynamics:	



How	Close	to	Chemical	Equilibrium?	
Use	Entropy	

•  Coarse-grain	by	polymer	length,	{NL}.	
•  Given	a	macrostate	{NL}	the	number	of	
possible	configura-ons	is:	

•  Entropy	is	defined	as	S	=	kB	Log	W.	
•  Chemical	Equilibrium	is	reached	when	entropy	
is	maximized	(Seq),	with	the	constraint	that	
there	are	N	total	molecules.	

•  Simulate	un-l	steady	state	and	consider	it	
lifelike	if	the	entropy	is	less	than	αSeq.	
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Where	Kauffman	and	Our	Group	Differ	

•  Kauffman	saw	popula-on	growth	with	increasing	p.	

•  System	growing,	but	might	be	in	chemical	equilibrium.	

•  Same	p	value	and	ar-ficial	chemistry,	two	different	runs.		One	reaches	chemical	
equilibrium	the	other	gets	kine-cally	trapped	in	a	non-equilibrium	steady	state,	
which	we	postulate	to	be	a	necessary	condi-on	for	life.	

p=0.00320	
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FIG. 3. (Color online) Probability of obtaining a lifelike state
in the model. Results are show for Lmax = 10 unless otherwise
noted. Results are shown for the choice of the dynamics cut
ωc = 0.01(2π/#tav), where #tav is the average time step in a given
dynamics simulation. The points are the products of the data in
Figs. 1, 4, and 5, and the lines are the products of the fits to that
data as described in the captions to those figures.

V. RESULTS

We repeated such calculations for a series of networks,
characterized by various p. For decreasing p, the number
of nonequilibrium final states increases to a maximum and
then decreases. Results obtained for Lmax = 10 and for three
values of the cutoff S/Seq (and for one value of the cutoff for
Lmax = 8) are shown in Fig. 3. The dynamical cutoff parameter
used here was ωc = 0.01(2π/#tav), where #tav is the average
value of the time step during the dynamics simlulation. The
value chosen for ωc assures that significant temporal variations
in the self-correlation function occur at least on time scales
down to 10 time steps. Dependence of the results on ωc was
explored as described below (Fig. 5). The error bars were
determined as described in Appendix D.

The qualitative results are not strongly dependent on the
choice of the entropy cutoff, and the value of p for which
the probability of forming a final state below the cutoff is
maximum is quite stable at a value of around p = 0.005. The
probability of forming a nonequilibrium final state at that value
of p is around a percent in all cases, varying between 0.3%
and 1.0% as the choice of the entropy cutoff is increased from
0.3 to 0.8. We find that the nonequilibrium states are generated
predominantly in very sparse networks, and that, even in them,
the likelihood of trapping a nonequilibrium state is quite small.

We understand the nonmonotonicity diagramed in Fig. 3
as follows. At large values of p, there are many reactions
in the network, making it relatively easy to achieve equilib-
rium, so equilibrium is usually achieved and the number of
nonequilibrium fixed points is small. As p becomes smaller,
the likelihood of kinetic blocking of the paths to equilibrium
grows and, with it, the number of nonequilibrium final states.
However, at very small p, the likelihood of forming a network
with a fixed number of species itself gets small (see Fig. 1). As
a result, the average number of nonequilibrium lifelike states
starts to shrink as p gets very small.

The results shown in Figs. 1, 4, and 5 are consistent with
this understanding. The probability of forming a network rises
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FIG. 4. (Color online) Probability of forming a steady state with
entropy lower than the indicated cutoff, given that the network is
“viable.”Results are shown for Lmax = 10 unless otherwise noted.
Smax is the cutoff for the calculated entropy of the system, whereas
Seq is the equilibrium entropy for the number of polymers in the
steady state.

sharply at a threshold around p = 0.002 in a percolationlike
transition, much like the one discussed by Kauffman and
co-workers [5–7], as shown in Fig. 1. However, as the
probability of forming a viable network rises, the network
of reactions becomes more connected and the likelihood of
forming an equilibrium final dynamical state increases, with
a corresponding decrease in the likelihood of the formation
of nonequilibrium dynamical final states of the sort which we
characterize as lifelike. This effect is shown in Fig. 4. Given a
viable network, the likelihood of forming a nonequilibrium
state drops with increasing values for p, as shown there,
becoming negligible when p ! 0.01.

Finally, we show the likelihood that, given a viable network
and a nonequilibrium final steady state, the steady state has
lifelike dynamics (as a function of p) in Fig. 5. Although
we observe that the systems tend to be “more dynamic,”
i.e., there are greater variations in the populations during
the simulation runs, with increasing values of p (due to
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FIG. 5. Probability of “lifelike dynamics” given that the network
is viable and the entropy is below the cutoff Smax = 0.8Seq. Results
are shown for Lmax = 10. Again, #tav in the legend corresponds to
the average time step of the dynamics simulation.

022725-5

A.	Wynveen,	I.	Fedorov,	and	J.	W.	Halley		
Physical	Review	E	89,	022725	(2014)	

•  The	non-equilibrium	constraint	reduces	the	probability	
of	lifelike	systems	at	large	p,	giving	a	maximum	
probability	at	a	small	value	of	p.	



Extension	to	Include	Diffusion	Through	
Space	

•  How	might	spa-al	structure	affect	prebio-c	
evolu-on?	

•  Mo-va-ons:	
– Can	the	non-equilibrium	states	of	the	model	
without	diffusion	survive	interac-on	with	the	
environment	through	diffusion?	

– Are	there	collec-ve	effects	which	might	suggest	
the	beginnings	of	mul-celluarity?	

– Space	allows	isola-on	(if	at	low	diffusion).	



Spa-al	Extension	
•  We	study	M=64	sites	arranged	as	an	8	x	8	2D	periodic	laoce.	

	

•  Molecules	are	allowed	to	diffuse	from	site	to	site	at	a	rate	
parameterized	by	η.	

•  Due	to	computa-onal	limita-ons	we	set	Lmax	=	6.	

…	 …	

…	 …	…	…	

…	…	…	…	



Simula-on	General	Structure	
p1	 p2	 p3	 …	

p1	Net	1	 p1	Net	2	 p1	Net	3	
…	

p1	Net	1	η1	 p1	Net	1	η2	 p1	Net	1	η3	 …	

For	different	p	values:	

Generate	mul-ple	
networks	(10	000)	per	
p	value,	check	if	they	
are	viable.	

•  Do	mul-ple	dynamic	simula-ons	with	random	ini-al	condi-ons	using	a	given	viable	
network	generated	by	parameter	p	combined	with	reac-on	rates	and	diffusive	value	η.		

•  A	steady	state	is	then	reached	with	polymer	length	and	spa-al	distribu-on	{NL,i}.	
•  Analyze	the	{NL,i}’s	to	determine	whether	the	run	was	lifelike	or	not.	

Network		
		Forma-on:	

Parameter			
sweep	across	η:		

Dynamics:	

p1	Net	1	η1	
Run	1	
{NL,i}	

p1	Net	1	η1	
Run	2	
{NL,i}	

p1	Net	1	η1	
Run	3	
{NL,i}	

…	



Par-al	and	Complete	Equilibra-on	

{NL,i}=	P	

{NL,i=NL	/	M}=	Pd	
Diffusively	Equilibrated	(DDLA)	

{NL,i=gL	Ni	/	GLmax}=	Pc	
Chemically	Equilibrated	at	each	site	(DALD)		

{NL,i=gL	N	/	(M	GLmax)}	
Totally	Equilibrated	(DEAD)	

B.F.	Intoy,	A.	Wynveen,	and	J.	W.	Halley	
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FIG. 3: Illustration of the geometry of the macrospace in
which partial equilibrations can take place. P represents the
Mlmax-tuple {NL,i} of instantaneous populations during the
simulation. Pd is the Mlmax-tuple of populations which max-
imize the entropy S under the constraint NL =

∑
i NL,i and

Pc is the Mlmax-tuple of populations which maximize the en-
tropy S under the constraint Ni =

∑
L NL,i. The plane illus-

trated is the two dimensional plane in which the two Mlmax

dimensional vectors Pc−P and Pd−P lie. The lines between
them in the picture are the projections of the hyperplanes
defined by the constraints Ni =

∑
L NL,i and NL =

∑
i NL,i

onto the plane of the figure. The quantities Rc and Rd are
the Euclidean norms of those vectors as defined in equation
(10).

NL,i = NL/M . We can regard this maximization as tak-
ing place in a hyperplane in the space of macrostates
defined by the constraint equations of which there are
lmax so the hyperplane has dimension (M − 1)lmax. We
denote the partially equilibrated position NL,i = NL/M
in that hyperplane by Pd (which is a 384-tuple of num-
bers). Similarly we showed that if we maximize S at fixed
Ni =

∑

L NL,i then the maximum occurs at the point
NL,i = gLNi/Glmax . That maximization takes place in
another hyperplane of dimension M(lmax−1). We denote
that point of chemical equilibration by Pc. We provide a
simplified sketch to illustrate the situation in figure 3.
In the simulations reported below, there is another con-

straint, namely that the ’food’ populations on each site
are kept at a fixed value (50 in the reported results) and
are therefore not expected to equilibrate. Thus the re-
laxation toward equilibrium to which the discussion in
this section applies is actually carried out numerically in
the chemical space not including the food set, and so the
dimensions in Figure 3 are all reduced by 128 (= 2M ,
since the food set consists of polymers of length one and
two).
At any point during the simulation we have values of

the variables {NL,i} and easily compute the coordinates
of the instantaneous point P in the macrospace (which
is just given by the values of {NL,i} ) and of the par-
tially equilibrated points Pd and Pc from those values.

To determine how close the instantaneous values of the
macrovariables are to partial diffusive or partial chemi-
cal equilibration, we compute the Euclidean distances in
the macrospace between the instantaneous point P and
the partially equilibrated points Pd and Pc, denoting the
distances by Rd and Rc, respectively:

Rc =

√

∑

L,i

(NL,i − gLNi/Glmax)2 ,

Rd =

√

∑

L,i

(NL,i −NL/M)2. (10)

If a system is fully globally equilibrated, both values will
be near zero, but cases in which one value is small and
the other is large are realized in the simulations and pro-
vide a quantitative definition of the meaning of partial
equilibration in the two senses discussed. We are only in-
terested in states for which the instantaneous calculated
entropy S (found from equation 5) is less than its fully
equilibrated value (found from equation 7), following our
earlier postulate that lifelike states must not be in full
equilibrium[4]. Given that constraint, we then separate
the entropically steady states which we find to be out of
equilibrium by values of Rc and Rd. We find, as we show
below, that they fall roughly into classes characterizable
as diffusively dead and locally alive (DDLA, small Rd,
large Rc), diffusively alive and locally dead (DALD, large
Rd, small Rc) and diffusively and locally alive (DALA,
large Rd and Rc ). An appropriate normalization for the
values of R is 1/(

√
2N) where N is the total number of

polymers, because it is easy to show that the maximum
value of R at given N is

√
2N .

V. RESULTS FOR FREQUENCY
DISTRIBUTIONS OF UNEQUILIBRATED AND

PARTIALLY EQUILIBRATED STATES

In figures 4 and 5 we show three dimensional scatter
plots indicating the steady state values of the quanti-
ties Rd/

√
2N and Rc/

√
2N for systems in entropically

steady states such that S/Sglobal,eq is less than 0.6 and
thus out of global equilibrium. As noted at the end of
the last section, these results are obtained by use of the
population statistics of the ’non-food’ populations only,
excluding the six species of ’food’ polymers of lengths one
and two whose total populations per site are held at 50.
Scatter plots are shown for several values of the parame-
ters p and η. As discussed, the entropically steady state
values fall roughly into three groups: those with small
Rd/

√
2N and large Rc/

√
2N , which are regarded as dif-

fusively dead and locally alive (DDLA); those with small
Rc/

√
2N and large Rd/

√
2N as diffusively alive and lo-

cally dead (DALD), and those with both Rc/
√
2N and

Rd/
√
2N large as diffusively and locally alive (DALA).

By choosing, somewhat arbitrarily, cutoffs of 0.03/
√
2 on

Rc/
√
2N and Rd/

√
2N to define these different types we
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Distances	From	Par-al	Equilibria:	

Macrospace	with	dimension=	M	Lmax	=	384	

System	Point:	
P	

Pd	

Pc	

Rd	

Rc	

								Hyperplane	with	fixed	NL	
and	dimension=(M-1)	Lmax=378.	

								Hyperplane	with	fixed	Ni	
and	dimension=M	(Lmax-1)=320.	
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Example	of	Results	Rc	and	Rd	in	Simulated	non-
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~20,000	Scarer	
points	on	this	plot.	



Probabili-es	of	DALD,	DDLA,	DALA	states	
as	a	func-on	of	p	and	η	
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with hopping parameter η.
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~700,000	Simula-ons	
were	done	to	make	
these	plots.	



DALA	States	Display	‘cancer-like’	
Explosions	

Before	Jump	(Green	Dot)	

Ater	Jump	(Red	X)	

p=0.00452	

η=10-7	



With	increasing	η	the	explosion	spreads:		p=0.00452	,	η=10-1	

	

Collec-ve	Effect	



Conclusions:	
•  With	the	inclusion	of	space	we	counted	the	likelihood,	as	func-ons	of	p	

and	η,	of	lifelike	states	characterized	unequilibrated	(DALA),	diffusively	but	
not	chemically	unequilibrated	(DALD)	and	chemically	but	not	diffusively	
unequilibrated	(DDLA).		

•  DDLA	states	closely	reproduce	the	states	in	the	earlier,	single	site,	model.	
•  DALD	are	rare.	
•  DALA	exhibit	explosive	growth.	
OSG	Computa-onal	Resources	Used:	
•  ~1.4	Million	computa-onal	wall	-me	hours	was	used	for	the	resul-ng	

publica-on	(Physical	Review	E	94,	042424	(2016)).	
Current	Work:	
•  Going	back	to	single	site	(well	mixed)	simula-ons:	

–  Interested	in	the	effects	of	bond	energy	and	temperature	on	the	model.	
–  Exploring	the	sensi-vity	of	what	is	in	the	food	set	(have	length	one	and	two,	

but	could	be	in	different	propor-ons).	
–  Interested	in	the	effects	of	increasing	the	number	of	monomer	types	

(currently	only	have	two,	biologically	DNA	has	4	and	proteins	have	20).	
–  S-ll	using	OSG	to	perform	simula-ons!	

Thank	you!	



Entropy	Calcula-ons	and	Misc	

3

Using option (i), we define a ’viable’ network as one
which contains at least one reaction path allowing pro-
duction of a polymer of maximum length starting from
the food set. We only carried out dynamics simulations
for those networks which were found to be viable, as in
reference [4]. In the calculations giving the reported re-
sults, we used an 8×8 square lattice of sites with peri-
odic boundary conditions and a maximum polymer size
of six. The maximum polymer size is unfortunately small
but was imposed by computational limitations. With an
approximate periodicity determined by the parameter η,
diffusive ’hops’ of randomly selected molecules were made
from their resident site to one of its four neighbors. The
precise relation of η to the number of diffusive events is
described in Appendix A where a review of the Gillespie
algorithm[8] used in the dynamics simulations also is pre-
sented. Roughly, η is the fraction of dynamical events,
which include both reactions and diffusive hops, which
are diffusive hops. An interesting and somewhat unex-
pected result to be discussed in more detail below is that
the model only exhibits interesting behavior at low dif-
fusion, i.e., at small values of η.

The chemical dynamics of the model has the same form
within each site as that for the single site model described
in [4] and is governed by stochastic implementation of the
probabilities described in the master equation

dnl/dt =
∑

l′,m,e[vl,l′,m,e(−kdnln′

lne + k−1
d nmne)

+vm,l′,l,e(+kdnmn′

lne − k−1
d nlne)]. (1)

nl is the number of polymers of species l, vl,l′,m,e is pro-

portional to the rate of the reaction l+ l′
e−→m, e denotes

the catalyst, l and l′ denote the polymer species com-
bined during ligation or produced during cleavage, and
m denotes the product of ligation or the reactant dur-
ing cleavage. As discussed in reference [4], the parameter
kd is a rough proxy for the effects of temperature in the
model. As before, in the simulation results reported here
we set kd = 1 corresponding to ’infinite temperature’,
which simply means that forward and reverse reactions
have equal probabililty.

In the dynamics portion of the code within this model,
we added a procedure to check, during each dynamic
simulation, that the calculated ratio of instantaneous
to equilibrium entropy had reached steady state as de-
scribed in Appendix B. This was done because, with very
small η values, the dynamical simulations took signifi-
cantly longer to reach steady state than they had in the
single site case, and we needed to both be sure that the
systems were in fact in steady state and to save compu-
tational resources by not carrying out excessive compu-
tational simulation after steady state had been reached.

III. INSTANTANEOUS, PARTIALLY
EQUILIBRATED, AND GLOBALLY

EQUILIBRATED ENTROPIES

The number of spatial islands is set to a value M (here
64) and the maximum ’polymer’ length to a value lmax

(here 6). A fine-grained, ’microscopic’ description of a
state is given by a (2lmax+1−2)M -tuple of integers {nl,i}
where l labels specific species as in reference [4] and nl,i

is the number of ’polymers’ of species l on site i. Gen-
eralizing the coarse graining procedure used in reference
[4] for a single site, we introduce a coarse graining that is
specified by the set of numbers {NL,i} where NL,i is the
number of ’polymers’ of length L on site i. There can
be a further coarse-graining to describe a ’macrostate’
within our multisite model by specifying solely the set of
numbers {NL} where NL =

∑M
i=1 NL,i is the total num-

ber of polymers with length L in the system. With this
notation one finds the number Wglobal of microstates as-
sociated with the coarser macrostate specified by {NL}
to be

Wglobal({NL}) =
∏

L

(NL + 2LM − 1)!

(2LM − 1)!NL!
=

=
∏

L

∑

∑
i NL,i=NL

M
∏

i=1

(NL,i + 2L − 1)!

(2L − 1)!NL,i!
. (2)

A formal derivation of the second equality appears in
Appendix C. We refer to Sglobal = lnWglobal as the in-
stantaneous global entropy.
Maximizing ln(Wglobal) subject to the condition

∑

L NL = N (the total number of polymers in a system)
gives

Sglobal,eq(N) = (MGlmax − lmax)F

(

N

MGlmax − lmax

)

(3)
for the equilibrium global entropy. Here F (x) = (1 +
x) ln(1 + x) − x lnx, Stirling’s approximation has been
used, Glmax = 2lmax+1 − 2, and the Boltzmann constant
(kB) has been dropped for convenience. This entropy
maximization corresponds to fully equilibrated popula-
tions of NL,i = gLN/(MGlmax) for polymers of length L
at site i, where gL = 2L − 1.
At the less coarse grained level, corresponding to speci-

fying the set of numbers {NL,i}, we define a local entropy
Si at each site

Si({NL,i}) =
∑

L

ln

[

(NL,i + 2L − 1)!

(2L − 1)!NL,i!

]

(4)

and a total local entropy

S({NL,i}) =
M
∑

i=1

Si({NL,i}). (5)
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FIG. 2: Instantaneous, global, and globally equilibrated en-
tropies as a function of the number of reaction steps for a
realization of the dynamics with . p=0.00761 and η = 10−7 .

From the second expression for Wglobal above (as derived
in Appendix C) we then have

Sglobal({NL}) = ln

⎡

⎣

∑

∑
i NL,i=NL

exp(S({NL,i}))

⎤

⎦ . (6)

From this it is easy to show that it will always be the case
that Sglobal ≥ S with the equality only holding approx-
imately if the sum in the exponent on the right of the
expression above relating Sglobal to S is dominated by its
largest term. These nonequilibrium quantities can both
be evaluated using the instantaneous values of {NL,i} at
any time during the simulation. We show some examples
of such evaluations in Figure 2. As expected, the in-
equality is always obeyed but the conditions for the near
equality are not always met.
If we maximize S subject only to the constraint

∑

LNL = N then we find

Seq(N) = MGlmaxF

(

N

MGlmax

)

, (7)

which is close to but less than the maximum value of
Sglobal given by 3. In our simulations MGlmax − lmax =
64(27 − 2) − 6 = 16250 whereas MGlmax = 16256 so the
difference is negligible and will shrink further for larger
lmax. Thus we see that, at equilibrium, the sum in (6) is
very nearly dominated by its largest term and maximiz-
ing either S or Sglobal leads to global equilibrium with
the population distributions NL,i = gLN/(MGlmax).
We now consider the possibility of partial equilibra-

tions, focusing attention on S. We can maximize S as
a function of the set of numbers {NL,i} for fixed values
of {NL} without requiring that the values NL,i within
a site take the equilibrium values resulting from the re-
actions within each site. We refer to this as ’diffusive
equilibration’, and we expect it to occur for sufficiently

large values of η. Maximizing S subject to the conditions
∑

i NL,i = NL gives

Sdiff eq({NL}) = M
∑

L

gLF

(

NL

gLM

)

(8)

in which F (x) = (1 + x) ln(1 + x) − x lnx as before
(but x has a different value). In this case, the equi-
librium values for the number of polymers of length L
at site i is given by NL,i = NL/M , which intuitively is
expected in diffusive equilibrium. If the instantaneous
state is close to this diffusively equilibrated state with
NL,i = NL/M but far from the fully equilibrated state
with NL,i = gLN/(MGlmax) then we refer to the system
as ’diffusively dead and locally alive’ (DDLA)
Turning to the other type of partial equilibration, we

maximize S subject to the conditions that the numbers
of polymers at the sites, i.e., Ni =

∑

L NL,i, are fixed
but we do not require that NL =

∑

i NL,i be fixed. In
this way, the maximization takes account of equilibration
through the chemical reactions within each site but does
not require diffusive equilibrium. The resulting partially
equilibrated entropy is found to be

Schem eq({Ni}) = Glmax

∑

i

F (Ni/Glmax) (9)

and the corresponding population distribution is NL,i =
gLNi/Glmax

When the instantaneously evaluated values
of NL,i are close to this distribution but far from the fully
equilibrated distribution NL,i = gLN/(MGlmax) then we
refer to the system as ’diffusively alive and locally dead’
(DALD).
If the instantaneous values NL,i are far from both par-

tially equilibrated distributions we refer to the system
as diffusively alive and locally alive (DALA). The quan-
titative definitions chosen to characterize ’close to’ and
’far from’ in these descriptions are provided in the next
section.

IV. DISCRIMINATING PARTIALLY
EQUILIBRATED FROM FULLY NON

EQUILIBRIUM STATES IN THE SIMULATIONS

Though the partially equilibrated states defined above
are well defined, it is not sufficient to compare the instan-
taneous value of S to the partially equilibrated values in
order to determine whether the instantaneous state is
partially equilibrated in one of the states defined. In-
stead, we consider the position of the state in the space
of ’macrostates’ defined by the set of variables {NL,i}.
The number of these variables is lmaxM which in our
simulations is 384 and is to be contrasted with the ’mi-
crostate’ specification in terms of the variables {nl,i} of
which there areMGlmax , which is 8064 in our simulations.
We have shown above that when S is maximized at

fixed NL =
∑

i NL,i , which we call diffusive equilibra-
tion, then the set of numbers {NL,i} take the values
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odic boundary conditions and a maximum polymer size
of six. The maximum polymer size is unfortunately small
but was imposed by computational limitations. With an
approximate periodicity determined by the parameter η,
diffusive ’hops’ of randomly selected molecules were made
from their resident site to one of its four neighbors. The
precise relation of η to the number of diffusive events is
described in Appendix A where a review of the Gillespie
algorithm[8] used in the dynamics simulations also is pre-
sented. Roughly, η is the fraction of dynamical events,
which include both reactions and diffusive hops, which
are diffusive hops. An interesting and somewhat unex-
pected result to be discussed in more detail below is that
the model only exhibits interesting behavior at low dif-
fusion, i.e., at small values of η.

The chemical dynamics of the model has the same form
within each site as that for the single site model described
in [4] and is governed by stochastic implementation of the
probabilities described in the master equation

dnl/dt =
∑

l′,m,e[vl,l′,m,e(−kdnln′

lne + k−1
d nmne)

+vm,l′,l,e(+kdnmn′

lne − k−1
d nlne)]. (1)

nl is the number of polymers of species l, vl,l′,m,e is pro-

portional to the rate of the reaction l+ l′
e−→m, e denotes

the catalyst, l and l′ denote the polymer species com-
bined during ligation or produced during cleavage, and
m denotes the product of ligation or the reactant dur-
ing cleavage. As discussed in reference [4], the parameter
kd is a rough proxy for the effects of temperature in the
model. As before, in the simulation results reported here
we set kd = 1 corresponding to ’infinite temperature’,
which simply means that forward and reverse reactions
have equal probabililty.

In the dynamics portion of the code within this model,
we added a procedure to check, during each dynamic
simulation, that the calculated ratio of instantaneous
to equilibrium entropy had reached steady state as de-
scribed in Appendix B. This was done because, with very
small η values, the dynamical simulations took signifi-
cantly longer to reach steady state than they had in the
single site case, and we needed to both be sure that the
systems were in fact in steady state and to save compu-
tational resources by not carrying out excessive compu-
tational simulation after steady state had been reached.

III. INSTANTANEOUS, PARTIALLY
EQUILIBRATED, AND GLOBALLY

EQUILIBRATED ENTROPIES

The number of spatial islands is set to a value M (here
64) and the maximum ’polymer’ length to a value lmax

(here 6). A fine-grained, ’microscopic’ description of a
state is given by a (2lmax+1−2)M -tuple of integers {nl,i}
where l labels specific species as in reference [4] and nl,i

is the number of ’polymers’ of species l on site i. Gen-
eralizing the coarse graining procedure used in reference
[4] for a single site, we introduce a coarse graining that is
specified by the set of numbers {NL,i} where NL,i is the
number of ’polymers’ of length L on site i. There can
be a further coarse-graining to describe a ’macrostate’
within our multisite model by specifying solely the set of
numbers {NL} where NL =

∑M
i=1 NL,i is the total num-

ber of polymers with length L in the system. With this
notation one finds the number Wglobal of microstates as-
sociated with the coarser macrostate specified by {NL}
to be

Wglobal({NL}) =
∏

L

(NL + 2LM − 1)!

(2LM − 1)!NL!
=

=
∏

L

∑

∑
i NL,i=NL

M
∏

i=1

(NL,i + 2L − 1)!

(2L − 1)!NL,i!
. (2)

A formal derivation of the second equality appears in
Appendix C. We refer to Sglobal = lnWglobal as the in-
stantaneous global entropy.
Maximizing ln(Wglobal) subject to the condition

∑

L NL = N (the total number of polymers in a system)
gives

Sglobal,eq(N) = (MGlmax − lmax)F

(

N

MGlmax − lmax

)

(3)
for the equilibrium global entropy. Here F (x) = (1 +
x) ln(1 + x) − x lnx, Stirling’s approximation has been
used, Glmax = 2lmax+1 − 2, and the Boltzmann constant
(kB) has been dropped for convenience. This entropy
maximization corresponds to fully equilibrated popula-
tions of NL,i = gLN/(MGlmax) for polymers of length L
at site i, where gL = 2L − 1.
At the less coarse grained level, corresponding to speci-

fying the set of numbers {NL,i}, we define a local entropy
Si at each site

Si({NL,i}) =
∑

L

ln

[

(NL,i + 2L − 1)!

(2L − 1)!NL,i!

]

(4)

and a total local entropy

S({NL,i}) =
M
∑

i=1

Si({NL,i}). (5)
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From the second expression for Wglobal above (as derived
in Appendix C) we then have

Sglobal({NL}) = ln

⎡

⎣

∑

∑
i NL,i=NL

exp(S({NL,i}))

⎤

⎦ . (6)

From this it is easy to show that it will always be the case
that Sglobal ≥ S with the equality only holding approx-
imately if the sum in the exponent on the right of the
expression above relating Sglobal to S is dominated by its
largest term. These nonequilibrium quantities can both
be evaluated using the instantaneous values of {NL,i} at
any time during the simulation. We show some examples
of such evaluations in Figure 2. As expected, the in-
equality is always obeyed but the conditions for the near
equality are not always met.
If we maximize S subject only to the constraint

∑

LNL = N then we find

Seq(N) = MGlmaxF

(

N

MGlmax

)

, (7)

which is close to but less than the maximum value of
Sglobal given by 3. In our simulations MGlmax − lmax =
64(27 − 2) − 6 = 16250 whereas MGlmax = 16256 so the
difference is negligible and will shrink further for larger
lmax. Thus we see that, at equilibrium, the sum in (6) is
very nearly dominated by its largest term and maximiz-
ing either S or Sglobal leads to global equilibrium with
the population distributions NL,i = gLN/(MGlmax).
We now consider the possibility of partial equilibra-

tions, focusing attention on S. We can maximize S as
a function of the set of numbers {NL,i} for fixed values
of {NL} without requiring that the values NL,i within
a site take the equilibrium values resulting from the re-
actions within each site. We refer to this as ’diffusive
equilibration’, and we expect it to occur for sufficiently

large values of η. Maximizing S subject to the conditions
∑

i NL,i = NL gives

Sdiff eq({NL}) = M
∑

L

gLF

(

NL

gLM

)

(8)

in which F (x) = (1 + x) ln(1 + x) − x lnx as before
(but x has a different value). In this case, the equi-
librium values for the number of polymers of length L
at site i is given by NL,i = NL/M , which intuitively is
expected in diffusive equilibrium. If the instantaneous
state is close to this diffusively equilibrated state with
NL,i = NL/M but far from the fully equilibrated state
with NL,i = gLN/(MGlmax) then we refer to the system
as ’diffusively dead and locally alive’ (DDLA)
Turning to the other type of partial equilibration, we

maximize S subject to the conditions that the numbers
of polymers at the sites, i.e., Ni =

∑

L NL,i, are fixed
but we do not require that NL =

∑

i NL,i be fixed. In
this way, the maximization takes account of equilibration
through the chemical reactions within each site but does
not require diffusive equilibrium. The resulting partially
equilibrated entropy is found to be

Schem eq({Ni}) = Glmax

∑

i

F (Ni/Glmax) (9)

and the corresponding population distribution is NL,i =
gLNi/Glmax

When the instantaneously evaluated values
of NL,i are close to this distribution but far from the fully
equilibrated distribution NL,i = gLN/(MGlmax) then we
refer to the system as ’diffusively alive and locally dead’
(DALD).
If the instantaneous values NL,i are far from both par-

tially equilibrated distributions we refer to the system
as diffusively alive and locally alive (DALA). The quan-
titative definitions chosen to characterize ’close to’ and
’far from’ in these descriptions are provided in the next
section.

IV. DISCRIMINATING PARTIALLY
EQUILIBRATED FROM FULLY NON

EQUILIBRIUM STATES IN THE SIMULATIONS

Though the partially equilibrated states defined above
are well defined, it is not sufficient to compare the instan-
taneous value of S to the partially equilibrated values in
order to determine whether the instantaneous state is
partially equilibrated in one of the states defined. In-
stead, we consider the position of the state in the space
of ’macrostates’ defined by the set of variables {NL,i}.
The number of these variables is lmaxM which in our
simulations is 384 and is to be contrasted with the ’mi-
crostate’ specification in terms of the variables {nl,i} of
which there areMGlmax , which is 8064 in our simulations.
We have shown above that when S is maximized at

fixed NL =
∑

i NL,i , which we call diffusive equilibra-
tion, then the set of numbers {NL,i} take the values
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