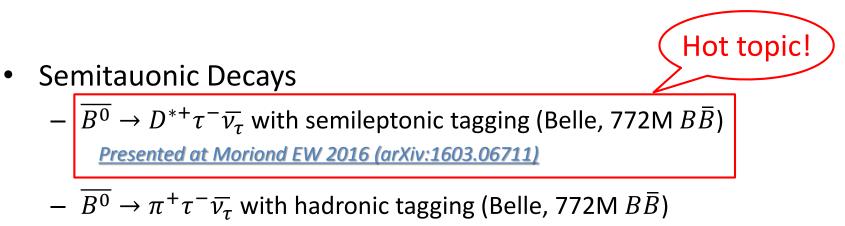


Recent Experimental Results for Semileptonic *B* decays

June 6, 2016 at FPCP 2016 Shigeki Hirose (Nagoya University)

For the Belle Collaboration

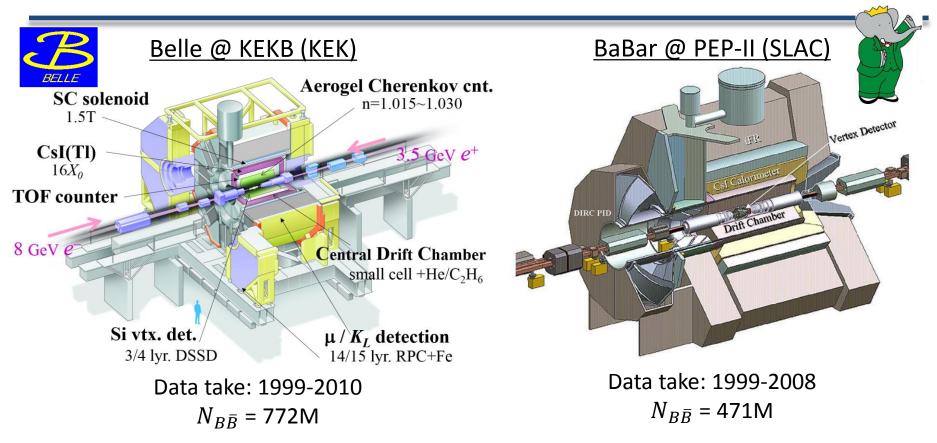
Semileptonic B Decays


- Good environment for $|V_{xb}|$ (x = u, c) extraction
 - Theoretically, cleaner than hadronic *B* decays; QCD contribution exists only in $b \rightarrow x$ transition part
- Semi<u>tau</u>onic decays (e.g. $\overline{B} \to D^{(*)}\tau^-\overline{\nu_{\tau}}$) are good probe for indirect new physics searches

Recent Topics

- $\overline{B} \to X_c l^- \overline{\nu_l} \ (l^- = e^-, \mu^-)$ measurements
 - $\overline{B} \rightarrow Dl^- \overline{\nu_l}$ with hadronic tagging (Belle, 772M $B\overline{B}$)

<u>Presented at EPS 2015 → Phys. Rev. D 93, 032006 (2016)</u>


- $\overline{B} \rightarrow D^{(*)}\pi^{-}\pi^{+}l^{-}\overline{\nu_{l}}$ with hadronic tagging (BaBar, 471M $B\overline{B}$) *Presented at EPS 2015* \rightarrow *Phys. Rev. Lett. 116, 041801 (2016)*

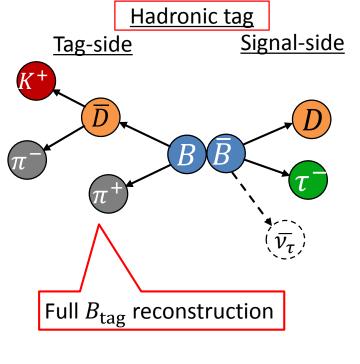
<u>Presented at EPS 2015 → Phys. Rev. D 93, 032007 (2016)</u>

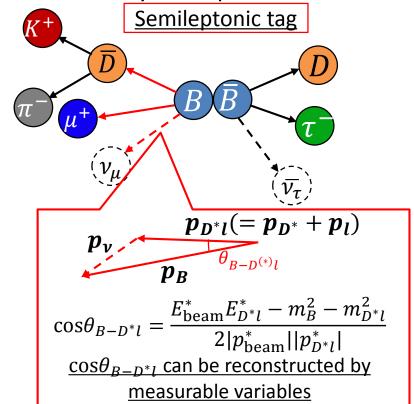
All the results above are based on the full statistics of each experiment

■ *B* Factories

• *B* factories with e^+e^- colliders at $\sqrt{s} = 10.58$ GeV

- Produce *B* mesons via $\Upsilon(4S) \rightarrow B\overline{B}$

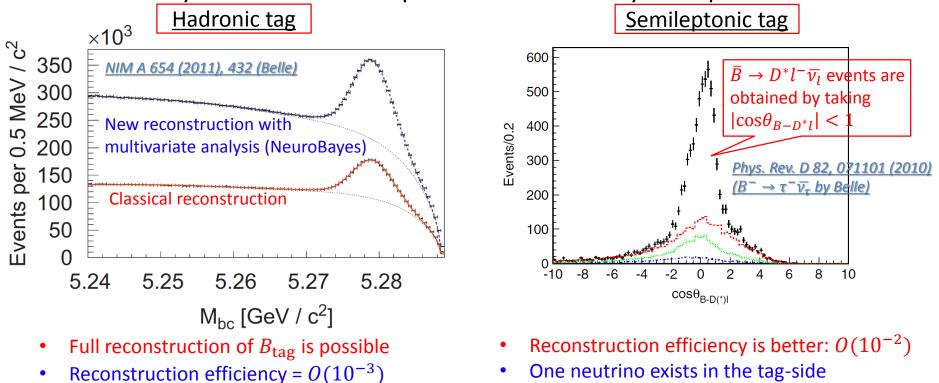

• Huge statistics: more than 1 billion $B\overline{B}$ have been accumulated at the two experiments


"Tagging" Analysis

• Reconstruct one B meson (B_{tag}) with specific decays

 \rightarrow Ensure all the remaining particles belong to the signal side

- Unique technique at *B* factories
 - Beam energy is precisely known
 - Exactly two B mesons are produced without any extra particles


Flavor Physics and CP Violation 2016

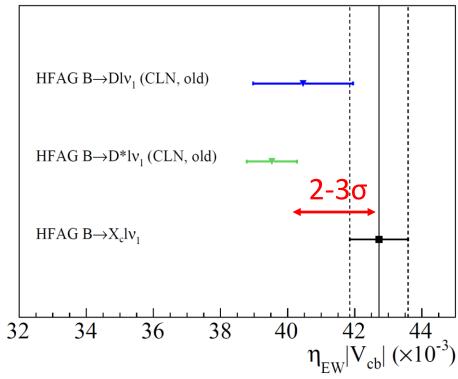
"Tagging" Analysis

• Reconstruct one B meson (B_{tag}) with specific decays

 \rightarrow Ensure all the remaining particles belong to the signal side

- Unique technique at *B* factories
 - Beam energy is precisely known
 - Exactly two B mesons are produced without any extra particles

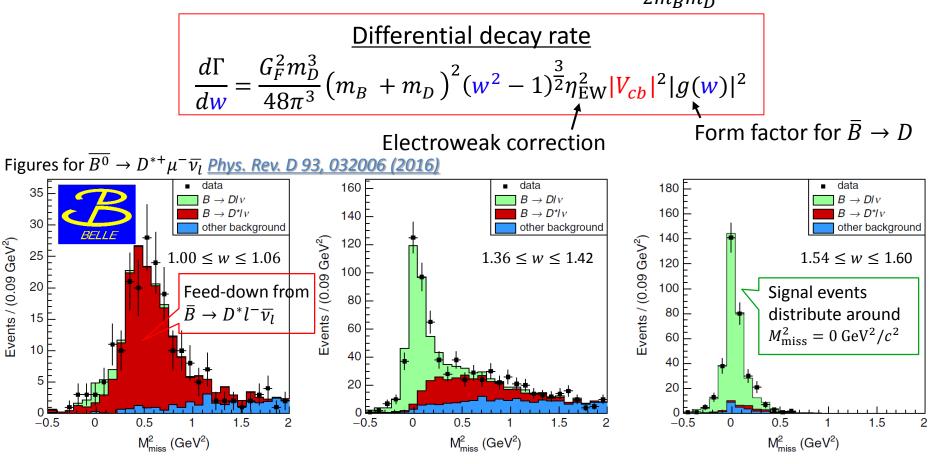
Exclusive $B \rightarrow X_c l^- \overline{\nu_l}$ Measurements


 $\overline{E} \to Dl^- \overline{\nu}_l \ (l^- = e^-, \mu^-)$ with hadronic tagging (Belle) Phys. Rev. D 93, 032006 (2016)

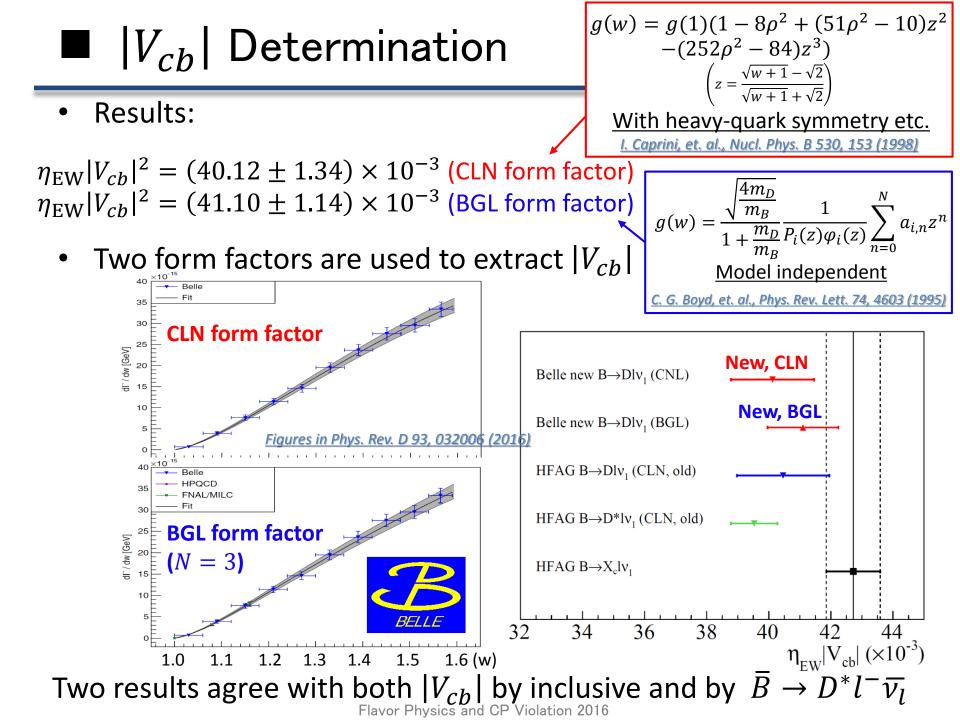
 $\overline{B} \rightarrow D^{(*)} \pi^{-} \pi^{+} l^{-} \overline{\nu_{l}}$ with hadronic tagging (BaBar) Phys. Rev. Lett. 116, 041801 (2016)

$\blacksquare |V_{cb}| \text{ Determination}$

- Discrepancy between inclusive and exclusive $|V_{cb}|$ measurements
 - − $|V_{cb}|$ determined by incl. measurements and by $\overline{B} \rightarrow D^{(*)}l^-\overline{\nu_l}$ decays show 2-3σ discrepancy
 - → Belle updated $|V_{cb}|$ determination with $\overline{B} \rightarrow Dl^- \overline{\nu_l}$ with full data
 - x7 larger statistics than the previous Belle analysis: Phys. Lett. B 526, 258 (2002)


Flavor Physics and CP Violation 2016

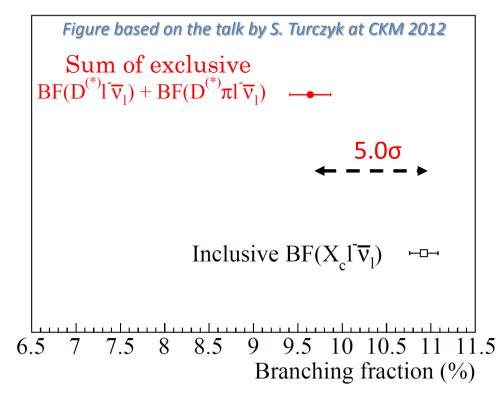
$\blacksquare \ \overline{B} \to D l^- \overline{\nu_l} \text{ by Belle}$


• Signal extraction with missing mass squared

$$M_{\text{miss}}^2 = \left(p_{\text{beam}} - p_{B_{\text{tag}}} - p_D - p_l\right)^2 \ (l = e, \mu) \xrightarrow{\rightarrow} \text{To be zero for signal}$$
with only one ν

• Signal reconstruction as a function of $w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$

Flavor Physics and CP Violation 2016



• Branching Fractions of $\overline{B} \to X_c l^- \overline{\nu_l}$

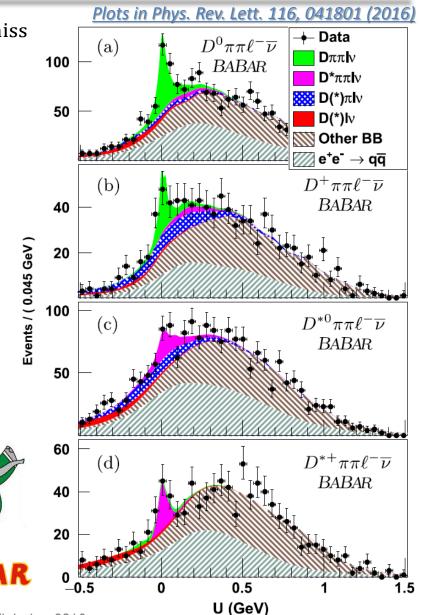
- $BF(\overline{B} \rightarrow X_c l^- \overline{v_l})$ by Inclusive and exclusive measurements are inconsistent
 - About 1.5% difference (5.0σ)
 - This indicates unmeasured exclusive $\overline{B} \rightarrow X_c l^- \overline{\nu_l}$ decays

→ BaBar measured additional exclusive decays: $\overline{B} \rightarrow D^{(*)}\pi^{-}\pi^{+}l^{-}\overline{\nu_{l}}$

11/25

Flavor Physics and CP Violation 2016

$\blacksquare \ \overline{B} \to D^{(*)}\pi^-\pi^+l^-\overline{\nu_l} \text{ by BaBar}$


• Signal extraction with $U = E_{miss} - p_{miss}$

- U has less dependence on modeling of decay dynamics than $M_{\rm miss}^2$

• Significant signals were observed

Mode	Sig. (stat. only)	Sig. (stat.+syst.)
$D^0\pi\pi l^-\overline{\nu_l}$	5.4	5.0
$D^+\pi\pi l^-\overline{\nu_l}$	3.5	3.0
$D^{*0}\pi\pi l^-\overline{\nu_l}$	1.8	1.6
$D^{*+}\pi\pi l^-\overline{\nu_l}$	3.3	3.0

First observation for $D^0 \pi \pi l^- \overline{\nu_l}$ **First evidence** for $D^{(*)+} \pi \pi l^- \overline{\nu_l}$

Flavor Physics and CP Violation 2016

12/25

Incl. vs Excl. Gap with $\overline{B} \to D^{(*)} \pi \pi l^{-} \overline{\nu}_{l}^{13/_{25}}$

- The obtained branching fractions $BF(\bar{B} \to D\pi^{-}\pi^{+}l^{-}\bar{\nu_{l}}) = (0.152 \pm 0.023(\text{stat}) \pm 0.018(\text{syst}) \pm 0.007(\text{norm}))\%$ $BF(\bar{B} \to D^{*}\pi^{-}\pi^{+}l^{-}\bar{\nu_{l}}) = (0.108 \pm 0.028(\text{stat}) \pm 0.023(\text{syst}) \pm 0.004(\text{norm}))\%$
- Total BFs for $\overline{B} \to D^{(*)}\pi\pi l^{-}\overline{\nu_{l}}$ with isospin symmetry: $BF(\overline{B} \to D^{(*)}\pi^{-}\pi^{+}l^{-}\overline{\nu_{l}})/BF(\overline{B} \to D^{(*)}\pi\pi l^{-}\overline{\nu_{l}}) = (0.50 \pm 0.17)$ $\to BF(\overline{B} \to D\pi\pi l^{-}\overline{\nu_{l}}) + BF(\overline{B} \to D^{*}\pi\pi l^{-}\overline{\nu_{l}}) = (0.52^{+0.14+0.27}_{-0.07-0.13})\%$

 $BF(D^{(*)}l\overline{v}_{l}) + BF(D^{(*)}\pi l\overline{v}_{l}) \longleftarrow$ $BF(D^{(*)}l\overline{v}_{l}) + BF(D^{(*)}\pi l\overline{v}_{l}) + BF(D^{(*)}\pi\pi l\overline{v}_{l})$

Inclusive $BF(X_c l \overline{v}_l) \rightarrow \neg$

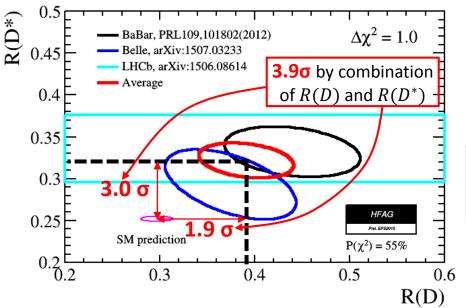
6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 Branching fraction (%) The incl.-excl. gap was reduced to 2-3σ Flavor Physics and CP Violation 2016

New Physics Search with Semitauonic Decays

 $\overline{B^0} \to D^{*+} \tau^- \overline{\nu_{\tau}}$ with semileptonic tagging (Belle) Presented at Moriond EW 2016 (arXiv:1603.06711)

 \swarrow $\overline{B^0} \to \pi^+ \tau^- \overline{\nu_{\tau}}$ with hadronic tagging (Belle) Phys. Rev. D 93, 032007 (2016)

$\blacksquare \ \overline{B} \to D^{(*)} \tau^- \overline{\nu_{\tau}} \text{ as of EPS 2015}$


 Experimental results from BaBar, Belle and LHCb show about 4σ discrepancy from SM prediction

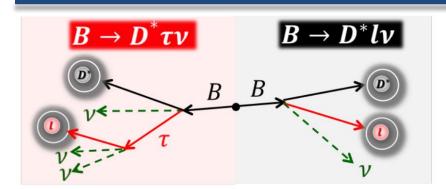
$$(D^{(*)}) = \frac{BF(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu_{\tau}})}{BF(\overline{B} \to D^{(*)}l^{-}\overline{\nu_{l}})}$$

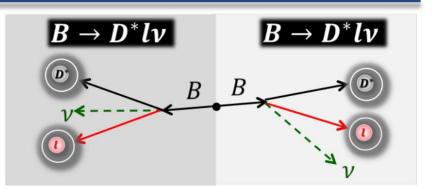
R

Some common systematics are (partly) cancelled out

- Theoretical uncertainty of form factors
- Uncertainty of $|V_{cb}|$
- Experimental uncertainty of efficiencies etc.

http://www.slac.stanford.edu/xorg/ hfag/semi/eps15/eps15_dtaunu.html


15/25

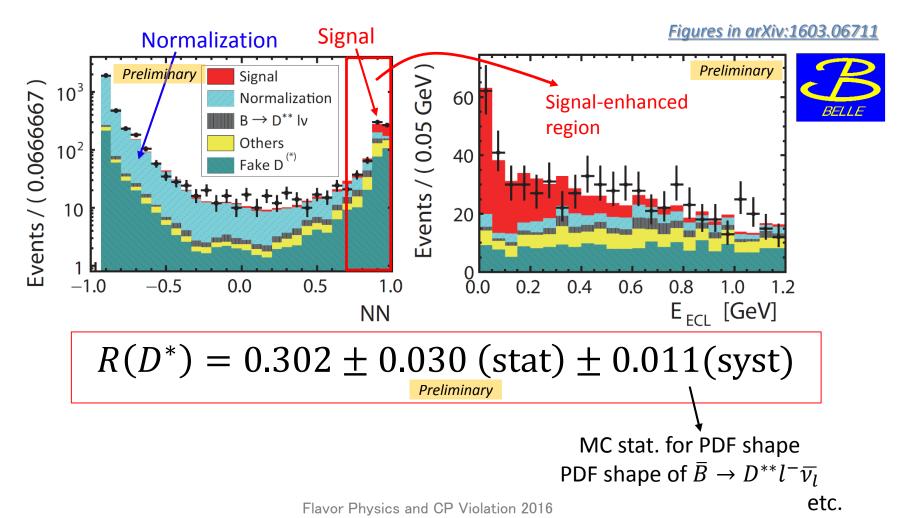

All the past results from B factories utilized hadronic decays for tagging \rightarrow Belle released a preliminary result of $R(D^*)$ with semileptonic tag (First $R(D^{(*)})$ measurement with S.L. tag)

Signal Signature

Figures presented at Moriond EW 2016 by P.Goldenzweig (Image credit: Y, Sato)

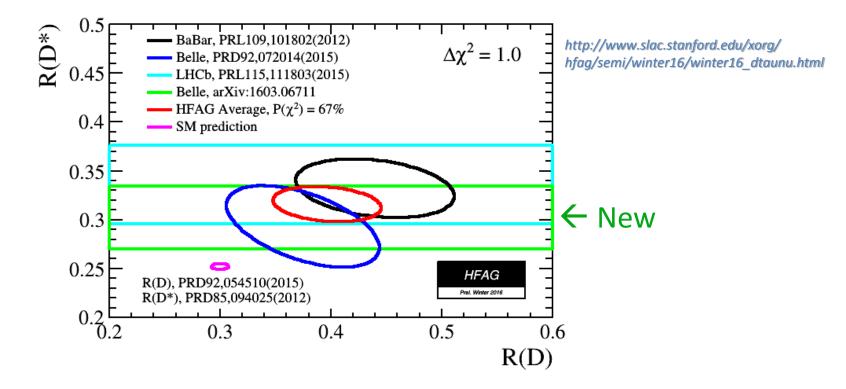
16/25

Numerator in $\mathcal{R}(D^*)$ \rightarrow Signal event Denominator in $\mathcal{R}(D^*)$ → Normalization event


- Only $\overline{B^0} \to D^{*+} \tau^- \overline{\nu_{\tau}}$ was measured as it is the cleanest
- Signal events can be separated from normalization events based on the kinematics: two more v in the signal

Variable	Signal	Norm.
Missing mass squared ($M_{\rm miss}^2$)	> 0	~0
Visible energy: sum of energy used for event recon.	Small	Large
$\cos\theta_{B-D^*l}$	< 0	[-1, +1]

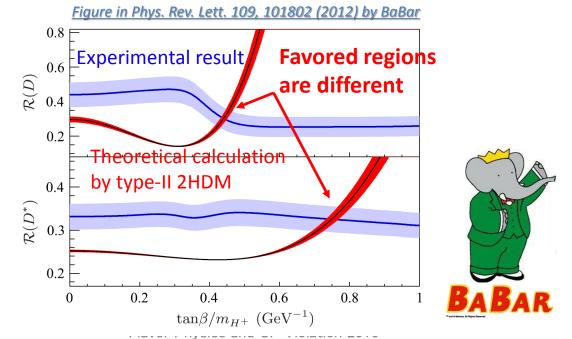
\rightarrow input for multivariate analysis with NeuroBayes


Signal Extraction

- Two-dimensional fit to NN and $E_{\rm ECL}$
 - − $E_{\rm ECL}$ = sum of energies on the electromagnetic calorimeter, unused for signal reconstruction → Background tends to be higher

New $R(D^{(*)})$ Average by HFAG

- HFAG updated the $R(D^{(*)})$ summary
 - The new Belle result is 1.6σ larger than the SM prediction

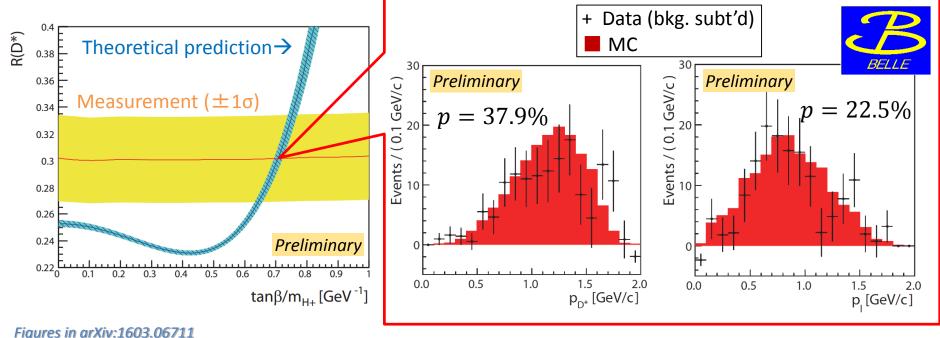

Discrepancies with SM for $\begin{cases} R(D^*) \text{ slightly increased: } 3.0\sigma \rightarrow 3.3\sigma \\ R(D^{(*)}) \text{ slightly increased: } 3.9\sigma \rightarrow 4.0\sigma \end{cases}$

18/25

Flavor Physics and CP Violation 2016

NP Test

- NP tests with $R(D^*) + D^*$ and lepton momenta
 - Efficiency was corrected as a function of the model parameter
- 1. Type-II 2 Higgs Doublet Model (Type-II 2HDM)
 - Some SUSY models have the same structure as Type-II 2HDM
 - BaBar excluded the model at 99.8% C.L. \rightarrow Independent test by Belle
- 2. Leptoquark as another scenario
 - Part of the phase space is compatible with the results from BaBar



■ NP Model: Type-II 2HDM

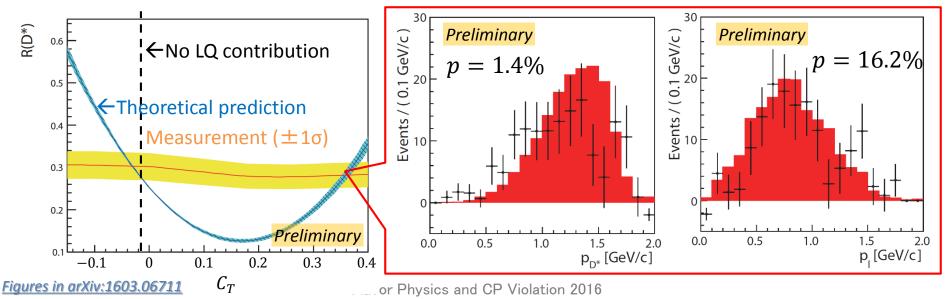
- Type-II 2HDM
 - Parameter $\tan\beta/m_{H^+}$
 - $tan\beta$ = VEV ratio of two Higgs doublets, m_{H^+} = charged Higgs mass

20/25

- Our result
 - $R(D^*)$ favors around $\tan\beta/m_{H^+} = 0.7$
 - At $\tan\beta/m_{H^+} = 0.7$, p_{D^*} and p_l distributions are compatible with type-II 2HDM

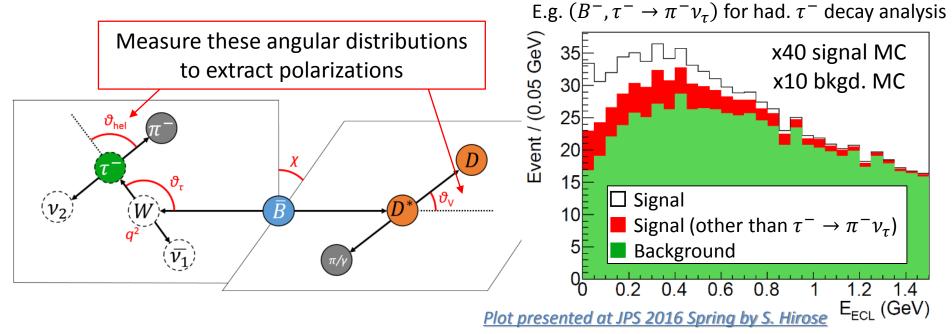
Flavor Physics and CP Violation 2016

NP Model: Leptoquark Model

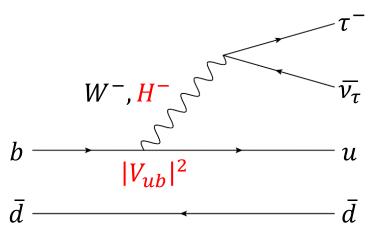

- R_2 -type leptoquark model with m_{LQ} = 1 TeV
 - The model is constructed by Y. Sakaki et al., Phys. Rev. D. 88, 094012 (2013)
 - Scalar-type (S_2 in the PRD paper) and Tensor-type operators contribute with the relation Wilson coefficients

$$C_{S_2} = 7.8C_T$$

- The result favors around $C_T = -0.03$ and $C_T = +0.36$
 - However, at $C_T = +0.36$, p_{D^*} and p_l distributions disfavor the leptoquark model



21/25



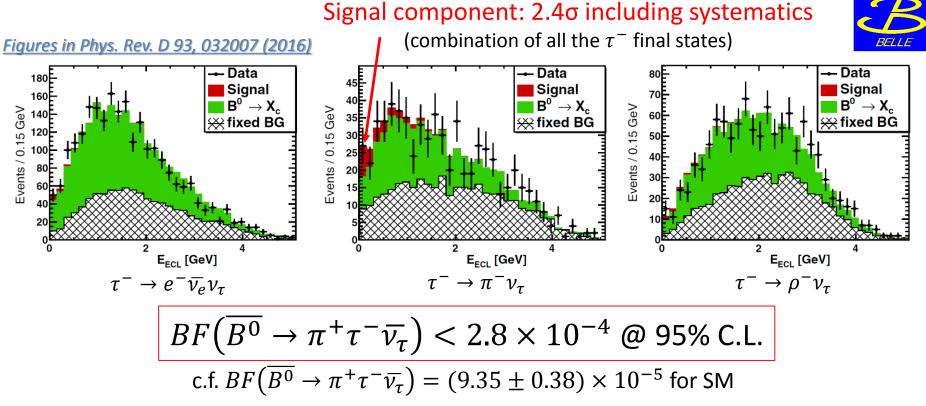
$\blacksquare \ \overline{B} \to D^{(*)} \tau^- \overline{\nu_{\tau}} \text{ Status at Belle}$

- $B^0 \rightarrow D^{*+} \tau^- \overline{\nu_{\tau}}$ result with semileptonic tagging is going to be published soon with further NP studies
- Two more $\overline{B} \to D^* \tau^- \overline{\nu_{\tau}}$ analysis are ongoing for summer
 - Hadronic tagging + hadronic τ decays ($\tau^- \rightarrow \pi^- \nu_{\tau}, \rho^- \nu_{\tau}$)
 - Inclusive tagging + $\tau^- \rightarrow l^- \overline{\nu_l} \nu_{\tau}$, $\pi^- \nu_{\tau}$
 - → Both analyses aim at polarization measurement of τ/D^* , which provide additional probes to NP <u>Theoretical studies in M. Tanaka and R. Watanabe, Phys. Rev. D. 87, 034028 (2013)</u>

Flavor Physics and CP Violation 2016

• $\overline{B^0} \to \pi^+ \tau^- \overline{\nu_{\tau}}$ contains b quark and τ^- lepton like $\overline{B} \to D^{(*)} \tau^- \overline{\nu_{\tau}}$

- May provide hints to the 4 σ discrepancy between experiments and SM prediction in $\overline{B} \rightarrow D^{(*)} \tau^- \overline{\nu_{\tau}}$


• Branching fraction is suppressed by $|V_{ub}/V_{cb}|^2$ compared to $\overline{B} \to D^{(*)}\tau^-\overline{\nu_{\tau}}$ $BF(\overline{B^0} \to \pi^+\tau^-\overline{\nu_{\tau}}) = (9.35 \pm 0.38) \times 10^{-5}$

 \rightarrow This may be enhanced/diminished by NP effects

Belle performed the first measurement of $\overline{B^0} \to \pi^+ \tau^- \overline{\nu_{\tau}}$

$\blacksquare \ \overline{B^0} \to \pi^+ \tau^- \overline{\nu_\tau}$

- Use $\tau^- \to e^- \overline{\nu_e} \nu_{\tau}$, $\pi^- \nu_{\tau}$ and $\rho^- \nu_{\tau}$ for signal reconstruction
 - Oppositely-charged two particles (and π^0) in the signal side are the sign of the signal
- Signal extraction with $E_{\rm ECL}$

U.L. is not so far from the SM prediction, interesting topic at the early stage of Belle II

Flavor Physics and CP Violation 2016

Summary and Prospects

- Results for tree-level semileptonic B decays
 - $|V_{cb}|$ determination with $\overline{B} \rightarrow Dl^- \overline{v_l}$ by Belle
 - First observation/evidence of a few $\overline{B} \to D^{(*)}\pi^{-}\pi^{+}l^{-}\overline{\nu_{l}}$ decays by BaBar

25/25

- New $\overline{B^0} \rightarrow D^{*+} \tau^- \overline{\nu_{\tau}}$ result by Belle; Semileptonic tag was used for the first time to the semitauonic decay analysis

→ Combined $R(D^{(*)})$ by HFAG show 4.0 σ discrepancy with SM

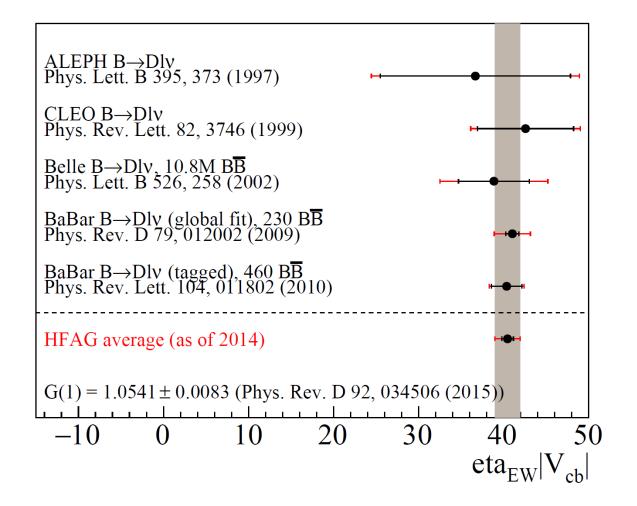
– Belle set U.L. for $\overline{B^0} \to \pi^+ \tau^- \overline{\nu_\tau}$ for the first time

Belle and BaBar are still active for semileptonic B decays

- Prospects for near future
 - Belle and BaBar continue releasing interesting results at the era that Belle II is starting soon
 - Also, LHCb is a great competitor as they have shown their capability for semileptonic *B* decay analyses; Interesting news must be provided soon

Hadronic Tagging

• Comparison between Belle and BaBar

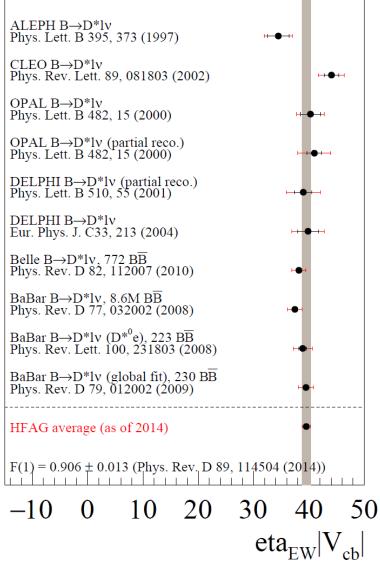

	Belle	BaBar
# of decay chains	1104	1768
Algorithm	Exclusive recon. with NeuroBayes	Semi-inclusive recon.
Recon. eff. (typ.)	0.2% (B ⁰) 0.3% (B ⁺)	0.2% (B ⁰) 0.4% (B ⁺)

- BaBar uses "semi-inclusive" reconstruction
 - Require $B_{\text{tag}} \rightarrow SX^{\pm}$
 - $S = \text{Seed meson with a charm } (D, D^*, D_S, D_S^+, J/\psi)$
 - X^{\pm} = charged state with up to five hadrons (K_S^0 , π^{\pm} and up-to two π^0)
 - Analysis-dependent efficiency/purity adjustment by selecting decay chains

$\blacksquare |V_{cb}| \text{ Measurement by } \overline{B} \to Dl^- \overline{\nu_l}$

28/25

• Average by HFAG

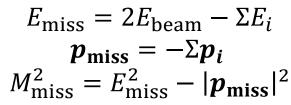


Flavor Physics and CP Violation 2016

• $|V_{cb}|$ Measurement by $\overline{B} \to D^* l^- \overline{\nu_l}$

29/25

• Average by HFAG


Flavor Physics and GP violation 2010

• Old vs New $\overline{B} \to Dl^- \overline{\nu_l}$ by Belle

• Old analysis in 2002

Table 3

Use missing mass squared by

Not but hadronic tagging, so systematic error was large while statistical error is small

Large uncertainty arose from imperfection of detector simulation

Summary of the relative systematic errors.							
Source of uncertainty	$\Delta V_{cb} F_D(1) \ (\%)$	$\Delta \hat{\rho}_D^2~(\%)$	$\Delta\Gamma$ (%)				
ν reconstruction simulation	10.6	9.7	15.5				
Correlated background normalization	2.4	4.4	1.9				
D^* form factor	1.5	2.8	0.9				
Other background normalization	0.6	1.8	0.4				
D^+ vertexing efficiency	4.7	5.8	5.3				
Lepton finding efficiency	1.5	-	3.0				
$N_{B\bar{B}}$	0.5	-	1.0				
$Br(D^+ \to K^- \pi^+ \pi^+)$	3.3	-	6.7				
$ au_{ar{B^0}}$	1.0	-	2.1				
Total	12.5	12.6	18.2				

Phys. Rev. D 93, 032006 (2016)

TABLE IV. Itemization of the systematic uncertainty in $\Delta\Gamma_i/\Delta w$ in each *w* bin. Refer to the main text for more details on the systematic error components.

		$\sigma(\Delta\Gamma_i/\Delta w)(\%)$								
	0	1	2	3	4	5	6	7	8	9
Tag correction	3.0	3.2	3.3	3.4	3.4	3.4	3.4	3.3	3.3	3.2
Charged tracks	1.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
$\mathcal{B}(D \rightarrow \text{hadronic})$	2.0	1.8	1.8	1.8	1.8	1.8	1.8	1.9	1.9	1.9
$\mathcal{B}(B \to D^{*(*)} \ell \nu)$	1.3	0.8	0.8	0.9	0.8	0.7	0.5	0.2	0.2	0.4
$\mathcal{B}(B \to X_u \ell \nu)$	0.4	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
$FF(B \to D^* \ell \nu)$	0.4	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.2
$FF(B \to D^{**}\ell\nu)$	2.5	1.2	0.9	0.7	0.5	0.5	0.7	0.5	0.1	0.4
Signal shape	5.0	0.8	0.6	0.5	0.5	0.4	0.3	0.3	0.2	0.1
Lifetimes	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
π^0 efficiency	0.9	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7
K/π efficiency	1.1	0.9	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0
K_S efficiency	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Luminosity	1.4	1.4	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Total	7.3	4.7	4.7	4.7	4.7	4.6	4.7	4.6	4.5	4.5

Phys. Lett. B 526, 258 (2002)

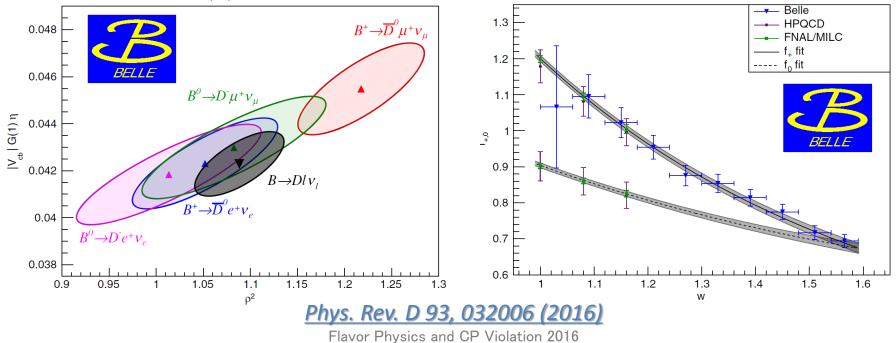
30/25

BFs by New $\overline{B} \to Dl^- \overline{\nu_l}$ Measurement ^{31/25}

Sample	Signal yield	B (%)
$B^0 \rightarrow D^- e^+ \nu_e$	$2848\pm72\pm17$	$2.44 \pm 0.06 \pm 0.12$
$B^0 ightarrow D^- \mu^+ u_\mu$	$2302\pm63\pm13$	$2.39 \pm 0.06 \pm 0.11$
$B^+ \rightarrow \bar{D}^0 e^+ \nu_e$	$6456\pm126\pm66$	$2.57 \pm 0.05 \pm 0.13$
$B^+ o ar{D}^0 \mu^+ u_\mu$	$5386 \pm 110 \pm 51$	$2.58 \pm 0.05 \pm 0.13$
$B^0 \rightarrow D^- \ell^+ \nu_\ell$	$5150\pm95\pm29$	$2.39 \pm 0.04 \pm 0.11$
$B^+ o ar{D}^0 \ell^+ u_\ell$	$11843 \pm 167 \pm 120$	$2.54 \pm 0.04 \pm 0.13$
$B \to D\ell \nu_\ell$	$16992 \pm 192 \pm 142$	$2.31 \pm 0.03 \pm 0.11$

HFAG 2014: $(2.13 \pm 0.03 \pm 0.09)\%$

Fit


- Fit parameters are $\eta_{\rm EW}^2 |V_{cb}|^2 g(1)$ and form factor parameters
- Form factor parameters

- CLN:
$$\rho$$
 for $g(w) = g(1)(1 - 8\rho^2 + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3)$

i = 0, 1, 2 are determined by LQCD calculation

 $- \text{ BGN: } g(w) = \frac{\sqrt{m_B}}{1 + \frac{m_D}{m_B}} \frac{1}{P_i(z)\varphi_i(z)} \sum_{n=0}^N a_{i,n} z^n \quad \text{(Fermilab Lattice and MILC Collaboration, Phys. Rev. D 92, 034506 (2015); HPQCD Collaboration, Phys. Rev. D 92, 054510 (2015))}$

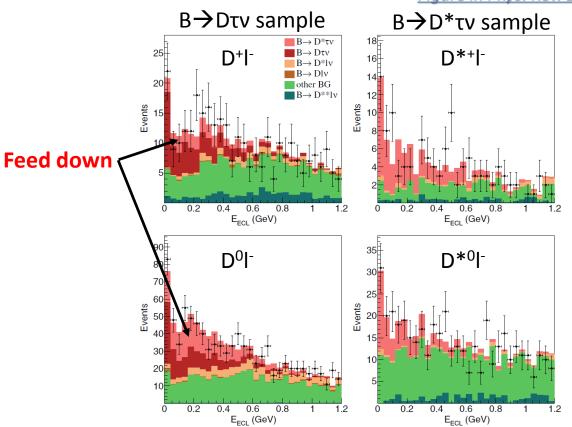
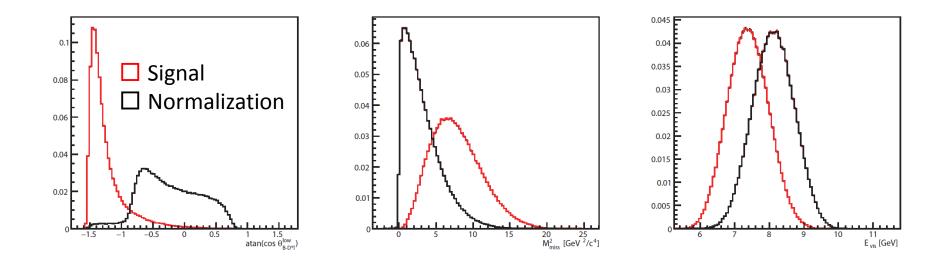
 $\rightarrow N = 3(4)$ is used; Combined fit to Belle data and Lattice data

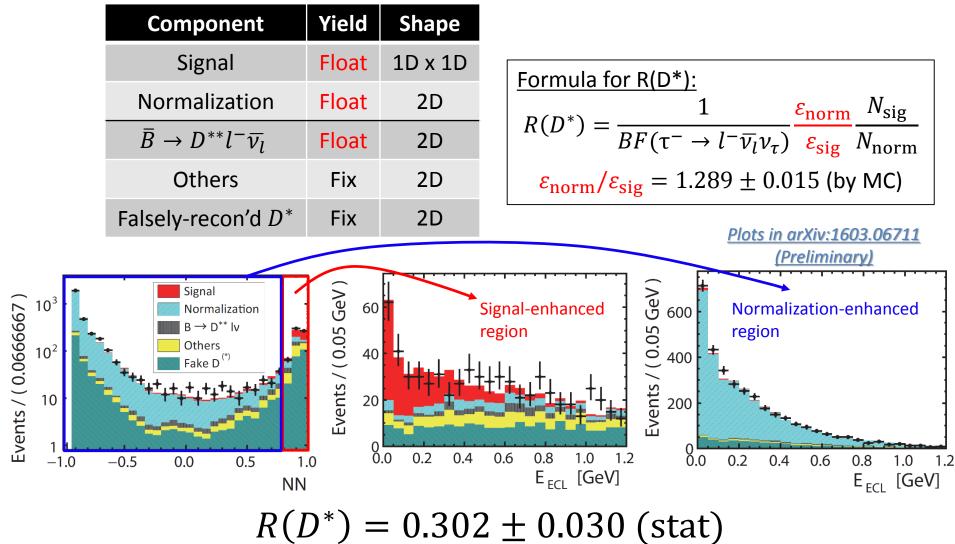
Correlation between R(D) and R(D*)

 Because of huge feed-down from B→D*τν to B→Dτν, there is a negative correlation between R(D) and R(D*)

33/25

- If $R(D^*)$ looks large, feed-down from $B \rightarrow D^*\tau v$ to $B \rightarrow D\tau v$ also looks large. Then R(D) looks small. Figure in Phys. Rev. D 92, 072014 (2015) by Belle


FIG. 4 (color online). Projections of the fit results and data points with statistical uncertainties in a signal-enhanced region of $M_{\text{miss}}^2 > 2.0 \text{ GeV}^2/c^4$ in the E_{ECL} dimension. Top left: $D^+\ell^-$; top right: $D^{*+}\ell^-$; bottom left: $D^0\ell^-$; bottom right: $D^{*0}\ell^-$.

■ Distributions to Separate Sig. vs Norm.

Signal Extraction

• Two-dimensional fit to NN and $E_{\rm ECL}$

Flavor Physics and CP Violation 2016

Systematics

- Limited MC statistics caused uncertainties of PDF shapes
 - Evaluated with toy MC studies with changing PDF shapes within their statistical errors
- PDF shape uncertainty for $\overline{B} \to D^{**}l^-\overline{\nu_l}$ arises from poorly known $\overline{B} \to D^{**}l^-\overline{\nu_l}/D^{**}$ branching fractions

Varied composition within their uncertainties

Figure presented at Moriond EW 2016 by P.Goldenzweia

	$\mathcal{R}(D^*)$ [%]		
Sources	$\ell^{\rm sig} = e, \mu$	$\ell^{\mathrm{sig}} = e$	$\ell^{\mathrm{sig}} = \mu$
MC statistics for PDF shape	2.2%	2.5%	3.9%
PDF shape of the normalization	$^{+1.1}_{-0.0}\%$	$^{+2.1}_{-0.0}\%$	$^{+2.8}_{-0.0}\%$
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	$^{+1.0}_{-1.7}\%$	$^{+0.7}_{-1.3}\%$	$^{+2.2}_{-3.3}\%$
PDF shape and yields of fake $D^{(*)}$	1.4%	1.6%	1.6%
PDF shape and yields of $B \to X_c D^*$	1.1%	1.2%	1.1%
Reconstruction efficiency ratio $\varepsilon_{\rm norm}/\varepsilon_{\rm sig}$	1.2%	1.5%	1.9%
Modeling of semileptonic decay	0.2%	0.2%	0.3%
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2%	0.2%	0.2%
Total systematic uncertainties	$^{+3.4}_{-3.5}\%$	$^{+4.1}_{-3.7}\%$	$^{+5.9}_{-5.8}\%$

$R(D^*) = 0.302 \pm 0.030 \text{ (stat)} \pm 0.011 \text{ (syst)} (13.8\sigma)$

(preliminary)

NP Model: Leptoquark Model

• Belle also tested the R_2 -type leptoquark model

<u>M. Tanaka and R. Watanabe,</u> Phys. Rev. D. 87, 034028 (2013)

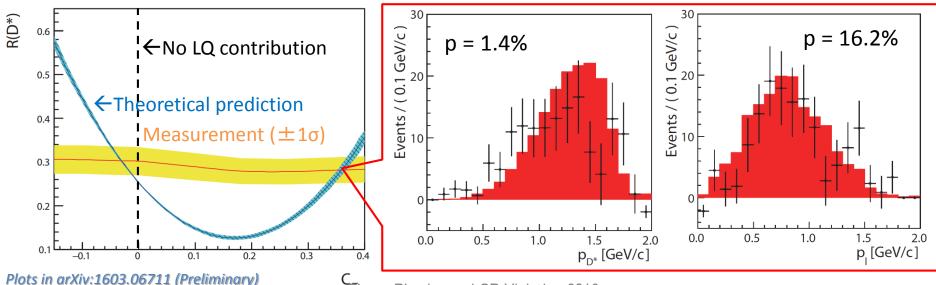
TABLE I. Quantum numbers of scalar and vector leptoquarks with $SU(3)_c \times SU(2)_L \times U(1)_Y$ invariant couplings.

Y. Sakaki et al., Phys. Rev. D. 88, 094012 (2013)

$\frac{1}{2}$	50(2)	$\times O(1)_{Y}$	mvarian	t coupii.	155.		$C_{1} = -\frac{2}{2} \sqrt{2C} U \Sigma$
	S_1	S_3	V_2	R_2	U_1	U_3	$-\mathcal{L}_{\rm eff} = 2\sqrt{2}G_F V_{cb} \Sigma_{l=e,\mu,\tau}$
spin	0	0	1	0	1	1	
F = 3B + L	-2	-2	-2	0	0	Û	[•] R ₂ -type LQ model has cont
$SU(3)_c$	3*	3*	3*	3	3	3	$\int_{-\infty}^{-\infty} h \overline{\pi} u$
$SU(2)_L$	1	3	2	2	1	3	$O_{S_2} = \overline{c_R} b_L \overline{\tau_R} v_L \qquad \qquad$
$U(1)_{Y=Q-T_3}$	1/3	1/3	5/6	7/6	2/3	2/3	$O_T = \overline{c_R} \sigma^{\mu\nu} b_R \overline{\tau_R} \sigma_{\mu\nu} \nu_L $
							ι κ κκρυι

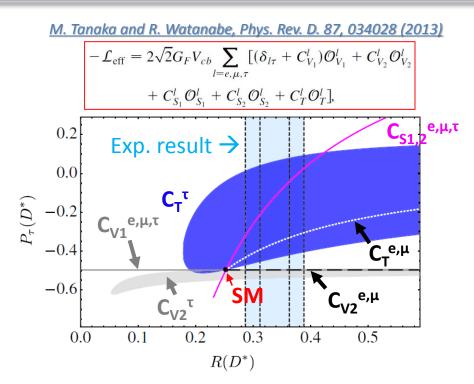
Effective Lagrangean for
$$b \to c\tau^- \overline{v_{\tau}}$$
 transition

$$-\mathcal{L}_{eff} = 2\sqrt{2}G_F V_{cb} \Sigma_{l=e,\mu,\tau} \Big[\delta_{\tau} O_{V_1} + \Sigma_{i=V_1,V_2,S_1,S_2,T} C_i O_i \Big]$$


$$R_2$$
-type LQ model has contribution to S_1 and T currents

$$O_{S_2} = \overline{c_R} b_L \overline{\tau_R} v_L$$

$$C_{S_2} = 7.8C_T$$
 at m_h scale


• The result supports around $C_T = -0.03$ and $C_T = +0.36$

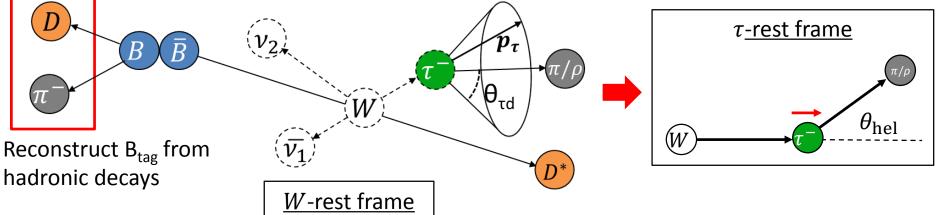
- At $C_T = +0.36$, p_{D^*} and p_l distribution look inconsistent

Flavor Physics and CP Violation 2016

Motivation of τ Polarization Analysis

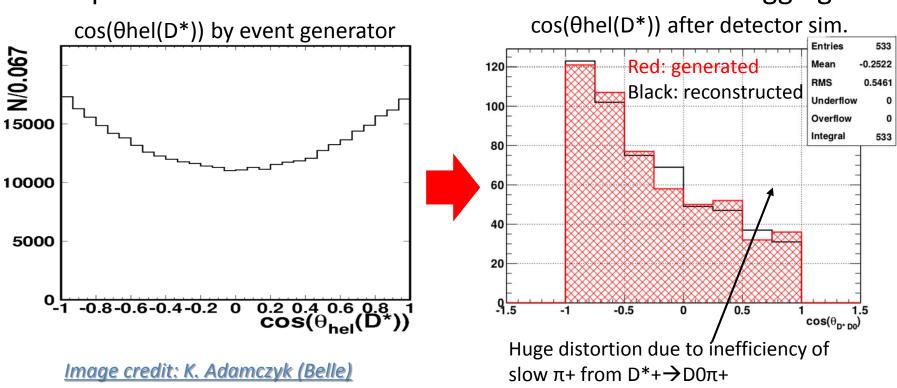
• Polarizations may give us additional information for 4.0σ discrepancy of R(D(*))

• Analysis procedure for P_{τ}


- Measure $\cos\theta_{\text{hel}}$ distribution at τ -rest frame $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{1}{2} (1 + \alpha P_{\tau} \cos\theta_{\text{hel}}) \xrightarrow{\text{ex. A. Rouge, "Tau decays as polarization analysers" (1990)}}{\frac{\text{ex. A. Rouge, "Tau decays as polarization analysers" (1990)}}$
- Utilize the W-rest frame instead of the τ -rest frame

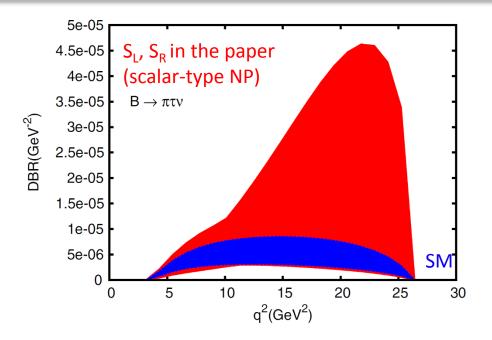
- Where
$$p_W = p_{B_{sig}} - p_{D^*} = 0$$
 $\begin{array}{c} p_{B_{sig}} = p_{beam} - p_{B_{tag}} \\ p_{B_{tag}} \end{array}$ is obtained by full reconstruction

– On this frame, τ and $\overline{v_{\tau}}$ fly back-to-back therefore $|p_{\tau}|$ is fixed


$$\rightarrow \cos\theta_{\tau d} = \frac{2E_{\tau}E_{\pi} - m_{\tau}^2 - m_{\pi}^2}{2|p_{\tau}||p_{\pi}|} \text{ can be calculated}$$

- The cone on $p_{ au}$ is rotation-symmetric around the direction of $\pi/
 ho$
 - Boost an arbitrary direction and obtain correct $\cos heta_{
 m hel}$

Inclusive Tagging Analysis


- Firstly, reconstruct D* and τ in the signal side → collect all the remaining particle and calculate an invariant mass
 - If the event is signal, the particles except for D* and τ daughter are associated with Btag → The invariant mass must be equal to m_B
 Exploited in two analyses by Belle: PRL 99, 191807 (2007, 535M BB) and PRD 82, 072005 (2010, 657M BB)

τ polarization and D* measurements with inclusive tagging

Flavor Physics and CP Violation 2016

• NP Example for $B \rightarrow \pi \tau \nu$

• Scalar-type NP can enhance the branching fraction

- (1.69, 119.66) × 10⁻⁵

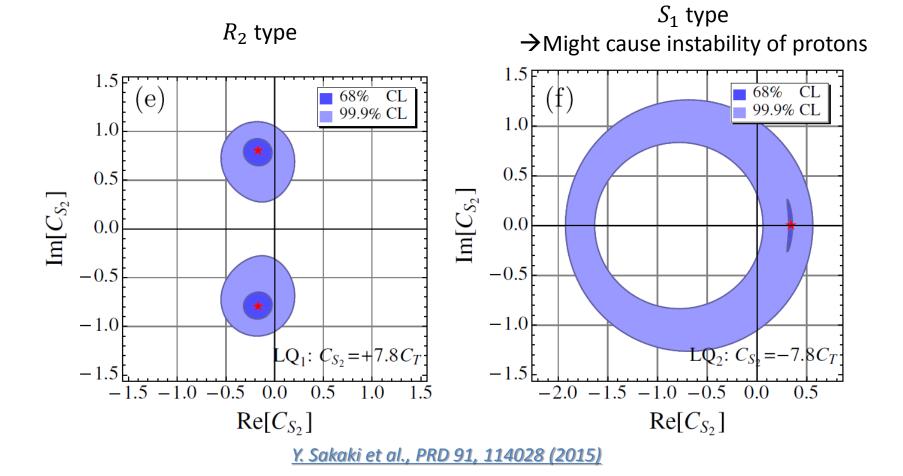
 \rightarrow It can reach 10 x BF_{SM} at the max. (= partly the parameter space was excluded by Belle)

R. Dutta et al., PRD 88, 114023 (2013)

41/₁₃

		up type	down type	charged lepton				
	type-l	φ ₂	φ ₂	φ ₂				
	type-ll	φ ₂	Φ_1	ϕ_1				
	type-X	φ ₂	φ ₂	Φ_1				
	type-Y	φ ₂	Φ_1	φ ₂				
Same structu	re	type-II 2 H $C_{S_1}^{\tau} = -\frac{m_b m_{\tau}}{m_{H^{\pm}}^2}$	iggs Doublet Mode tan ² β , $C_{S_2}^{\tau} = -\frac{m_c m_c}{m_H^2}$	<u>ι_τ</u> ±				
	TABLE II. Parameters $\xi_{d\mu}$ in each type of 2HDMs.							

	miller in: Turumeters g _{a,u} in each type of 2112113.										
	Type I	Type II	Туре Х	Type Y							
ξ_d	$\cot^2\beta$	$\tan^2\beta$	-1	-1							
ξ_u	$-\cot^2\beta$	1	1	$-\cot^2\beta$							


M. Tanaka and R. Watanabe, PRD 87, 034028 (2013)

Leptoquark

- Leptoquark
 - $C^l_{S_1} \cong \pm 7.8 C^l_T$

$$(SU(3)_c \times SU(2)_L \times U(1)_Y) = \begin{cases} (3,2,7/6) & (R_2) \\ (3^*,1,1/3) & (S_1) \end{cases}$$

- Some phase spaces are compatible with BaBar results

