Physics Benchmarks, Physics Signatures and Multi-TeV Lepton Colliders

Marco Battaglia

Muon Collider Workshop 2011, Telluride, CO

Physics	Higgs	SUSY	SSB	New Gauge	Extra
Signatures	Sector			Bosons	Dimensions
Resonance Scan		SUSY	D-BESS	Z'	KK
		Thresholds			
EW Fits			98	A_{LR} ,	
				A_{FB}	$A_{FB}^{bar{b}}$
Multi-Jets	H^+H^-		Techni- ρ		
	$t ar{t} H$				
	$HH u\bar{ u}$				
	HHZ				
	$HHH\nu\bar{\nu}$				
	HHHZ	144.00			
E_{miss} , Fwd	He^+e^-	$\widetilde{\ell}^+\widetilde{\ell}^-$	WW		
7077777		$\tilde{\chi}^+\tilde{\chi}^-$	scattering		

hep-ph/0103338

Physics Signatures

Multi-TeV lepton collisions likely to be required by new physics signals at the Tera-scale: essential to understand the intrinsic limitations of e+e- and $\mu+\mu$ - in terms of practical collision energy (and luminosity);

Several scenarios of new physics have thresolds for s-channel particle production extending over considerable energy span: need to evaluate achievable accuracy of measurements within realistic run plan;

Energy and Luminosity

Particle	Mass	Born	ISR	ISR+BS	ISR+BS	w/ Pol	w/ Pol
	(GeV)				+Bkg	(+0.8/0)	(+0.8/-0.6)
Model I							
χ_1^{\pm}	643.2	± 0.6	$\pm~0.6$	± 0.7	$\pm~0.7$	$\pm~0.5$	$\pm~0.4$
χ_2^0	643.1	± 4.3	± 13.8	± 24.1	± 25.6	± 23.9	± 18.1
χ_2^{\pm}	916.7	± 0.8	± 0.9	± 1.3	$\pm\ 1.4$	± 1.1	± 0.9

arXiv:1104.0523

Physics Signatures: Threshold Scans

Autoscan using beam radiation (ISR+Beamstrahlung at CLIC, ISR at MuC)

Perform scan to determine nature of resonances from EW observables (A_{FB}, A_{LR})

Physics Signatures: s-channel Resonance Production

Mass and width of CP-odd A^0 boson of special importance in neutralino WIMP DM scenarios since the $\chi\chi$ annihilation and the WIMP scattering cross section receives large contributions from the A^0 channel

SuperIso+FeynHiggs Simulation

Physics Signatures: s-channel Resonance Production

e+e- \rightarrow H⁰A⁰ \rightarrow bbbb at 3 TeV gives accuracies $\sigma M_A/M_A \sim 0.002$ -0.005 and $\sigma \Gamma_A/\Gamma_A \sim 0.10$ -0.15 σ (e+e- \rightarrow H⁰A⁰) \sim 1-10 fb

$$M_A = 743 \text{ GeV}, \tan \beta = 51$$

 $M_A = 903 \text{ GeV}, \tan \beta = 24$

 $\mu+\mu- \to A^0 \to bb$ at M_A should in principle give competitive accuracies on M_A and Γ_A with $\sigma(\mu+\mu- \to A^0) \sim 0.1$ - 1 pb

Physics Signatures: s-channel Resonance Production

•
$$e^+e^- \to \chi_2^0\chi_2^0 \to h^0\chi_1^0h^0\chi_1^0$$
; $h \to b\bar{b}$,

Identification and determination of mass of χ^0 and χ^+ through decays into bosons highlights the need of excellent parton energy resolution and b-tagging:

Particle	Mass (GeV)	No Rad	ISR	ISR+BS $\delta E/E$ =0	ISR+BS =0.025	
Model I	042.2	+ 1.01	1 17	1 2 50	1 2 50	1 4 5 4
χ_2^0	643.2	± 1.01	± 1.17	± 2.58	± 3.59	\pm 4.54

at 0.5 TeV $\sigma M_{\chi}/M_{\chi} \sim 0.005$ -0.01 for M \sim 200 GeV at 3 TeV $\sigma M_{\chi}/M_{\chi} \sim 0.01$ -0.05 for M = 600-900 GeV

Physics Signatures: Energy Resolution in Multi-Jet Final States

$$e^+e^-
ightarrow ilde{\mu}_R^+ ilde{\mu}_R^-
ightarrow \mu^+ \mu^- ilde{\chi}_1^0 ilde{\chi}_1^0$$

arXiv:1006.2547

Smuon Mass reconstruction accuracy for different assumptions

	$\delta p_{\rm t}/p_{\rm t}^2$	\sqrt{s} >	Data	Pol	BX	$(M\pm\sigma_{M})$	(GeV)
	$(\times 10^{-5} {\rm GeV^{-1}})$	(GeV)	Set	(e^{-}/e^{+})		$ ilde{\mu}_R^\pm$	$ ilde{\chi}^0_1$
	0.	2950	S	0/0	0	1106.3 ± 2.9	558.8 ± 1.3
0	0.	2500	S	0/0	0	1098.8 ± 2.6	555.4 ± 1.2
	0.	2500 (ISR only)	S	0/0	0	1109.2 ± 3.2	555.4 ± 1.2
	0.	2500	S (No FSR Cor)	0/0	0	1095.3 ± 3.2	557.7 ± 1.3
	2.	2500	S	0/0	0	1104.6 ± 2.9	560.0 ± 1.7
	2.	2500	S (G4+Reco)	0/0	0	1107.1 ± 2.8	560.1 ± 1.5
	4.	2500	S	0/0	0	1102.8 ± 2.9	557.2 ± 2.8
	6.	2500	S	0/0	0	1098.8 ± 3.1	559.1 ± 3.6
	8.	2500	S	0/0	0	1101.0 ± 3.4	564.2 ± 4.0
	20.	2500	S	0/0	0	1107.5 ± 4.2	575.7 ± 5.3
	2.	2500	S+B (0.8)	0/0	0	1107.5 ± 15.5	542.5 ± 11.3
	2.	2500	S+B (0.9)	0/0	0	1107.5 ± 14.4	551.2 ± 12.0
	2.	2500	S+B (0.8)	80/0	0	1107.7 ± 8.7	542.6 ± 4.6
	2.	2500	S+B (0.8)	80/60	0	1118.5 ± 6.1	551.3 ± 3.0
	2.	2500	S+B (0.8)	80/60	5	1105.7 ± 6.3	549.4 ± 3.9
	2.	2500	S+B (0.8)	80/60	20	1113.2 ± 6.8	550.3 ± 3.4

Physics Signatures: Energy Resolution in Leptonic Final States

EW observables (σ , A_{FB} , A_{LR}) with beam polarization in e+e- $\rightarrow \mu\mu$, bb, tt sensitive to virtual contribution of new particles with M >> E_{cm}

EW fits emphasise efficient flavour tagging, quark charge determination in highest energy jets and beam polarization

Physics Signatures: Electro-weak Fits

Complete the SM through t-channel/fusion channels

Suppressed SM processes (H(120) $\rightarrow \mu + \mu -$, H(180) \rightarrow bb, H \rightarrow Z γ , HH production through g_{HHH}) become accessible at multi-TeV energies due to log s increase of WW fusion process and enhancement w/ polarised beams

Physics Signatures: Fwd Processes

$\gamma\gamma$ \rightarrow hadrons in multi-TeV collisions

At CLIC ~15 TeV/train dumped in detector ($|\cos \theta| < 0.98$) Preserving accuracy in measurements requires special care (timing, LHC jet clustering algorithms, kinematic fits, ...) effects studied on fully sim + reco events:

Nb. of BXs	$N_{\rm bkg}$	$N_{ m signal}$	M_A (GeV)	
of overlayed $\gamma\gamma$			4-jet	semi-incl.
0	76	222±19	1137.4 ± 3.3	1136.7 ± 3.4
5	77	224 ± 20	1144.4 ± 3.8	1135.9 ± 3.7
20	102	208±20	1160.7 ± 6.9	1139.9 ± 5.4
40	96	183±20	1167.2 ± 8.2	1134.1 ± 7.2

arXiV:1006.5659

Machine-induced backgrounds and benchmarks

Impact of LHC limits on lepton collider energy scale

How are LHC limits on strongly interacting particles impacting the likely spectrum of the weakly interacting particles a lepton collider wants to access in SUSY?

Coupling of MSUSY with slepton and gaugino masses is a prejudice derived from highly constrained models (cMSSM, mSUGRA, NUHM) used so far for benchmarking

In more generic MSSM models, such as the pMSSM, coupling becomes quite weak: (see also detailed analyses of Hewett *et al* arXiv:1103.1697)

Preliminary results of analysis imposing flavour constraints, Ωh^2 and LHC limits for 1 ab⁻¹ (20000 pMSSM points of which 1300 accepted) (MB, A Arbey, N Mahoudi):

Energy and Luminosity: SUSY Scale and LHC Limits

Impact of LHC limits on lepton collider energy scale

Energy and Luminosity: SUSY Scale and LHC Limits

Process	Signature	Detector Challenges	Machine Challenges
H^0 , $A^0 \rightarrow bb$ $H^+H^- \rightarrow tb$	Multi-jets	b tagging δE _{jet} w/ kin fitting	$\delta E_{_{beam}}$
Gaugino pairs, χ → W/Z/h	Multi-jets+ E _{missing}	dEjets w/o kin fitting Jet clustering	$\delta E_{_{beam}}$, bkg
Slepton pairs	Leptons+ E _{missing}	Lepton id δE at high E	L vs E _{beam} Threshold scan Polarisation
Squark pairs	Multi-jets+ E _{missing}	δE _{jet} at highest E	
EW observables in μμ, bb, tt	Multi-jets, Fwd	b tagging at highest E Quark charge, Fwd	Polarisation, bkg
ννΗ → μμ ννΗ → bb	Fwd Fwd b jets	Fwd E reco Fwd b tagging	bkg
ννΗΗ → bbbb	Fwd b jets	Fwd b tagging, Jet clustering	L, bkg, Polarisation
vvWW / vvZZ	Multi-jets Fwd	W/Z separation, Fwd	bkg