Physics Benchmarks, Physics Signatures and Multi-TeV Lepton Colliders Marco Battaglia Muon Collider Workshop 2011, Telluride, CO | Physics | Higgs | SUSY | SSB | New Gauge | Extra | |------------------|-------------------|--|----------------|------------|-------------------| | Signatures | Sector | | | Bosons | Dimensions | | Resonance Scan | | SUSY | D-BESS | Z' | KK | | | | Thresholds | | | | | EW Fits | | | 98 | A_{LR} , | | | | | | | A_{FB} | $A_{FB}^{bar{b}}$ | | Multi-Jets | H^+H^- | | Techni- ρ | | | | | $t ar{t} H$ | | | | | | | $HH u\bar{ u}$ | | | | | | | HHZ | | | | | | | $HHH\nu\bar{\nu}$ | | | | | | | HHHZ | 144.00 | | | | | E_{miss} , Fwd | He^+e^- | $\widetilde{\ell}^+\widetilde{\ell}^-$ | WW | | | | 7077777 | | $\tilde{\chi}^+\tilde{\chi}^-$ | scattering | | | hep-ph/0103338 #### Physics Signatures Multi-TeV lepton collisions likely to be required by new physics signals at the Tera-scale: essential to understand the intrinsic limitations of e+e- and $\mu+\mu$ - in terms of practical collision energy (and luminosity); Several scenarios of new physics have thresolds for s-channel particle production extending over considerable energy span: need to evaluate achievable accuracy of measurements within realistic run plan; #### **Energy and Luminosity** | Particle | Mass | Born | ISR | ISR+BS | ISR+BS | w/ Pol | w/ Pol | |----------------|-------|-----------|------------|------------|------------|------------|-------------| | | (GeV) | | | | +Bkg | (+0.8/0) | (+0.8/-0.6) | | Model I | | | | | | | | | χ_1^{\pm} | 643.2 | ± 0.6 | $\pm~0.6$ | ± 0.7 | $\pm~0.7$ | $\pm~0.5$ | $\pm~0.4$ | | χ_2^0 | 643.1 | ± 4.3 | ± 13.8 | ± 24.1 | ± 25.6 | ± 23.9 | ± 18.1 | | χ_2^{\pm} | 916.7 | ± 0.8 | ± 0.9 | ± 1.3 | $\pm\ 1.4$ | ± 1.1 | ± 0.9 | arXiv:1104.0523 #### Physics Signatures: Threshold Scans Autoscan using beam radiation (ISR+Beamstrahlung at CLIC, ISR at MuC) Perform scan to determine nature of resonances from EW observables (A_{FB}, A_{LR}) ### Physics Signatures: s-channel Resonance Production Mass and width of CP-odd A^0 boson of special importance in neutralino WIMP DM scenarios since the $\chi\chi$ annihilation and the WIMP scattering cross section receives large contributions from the A^0 channel SuperIso+FeynHiggs Simulation ### Physics Signatures: s-channel Resonance Production e+e- \rightarrow H⁰A⁰ \rightarrow bbbb at 3 TeV gives accuracies $\sigma M_A/M_A \sim 0.002$ -0.005 and $\sigma \Gamma_A/\Gamma_A \sim 0.10$ -0.15 σ (e+e- \rightarrow H⁰A⁰) \sim 1-10 fb $$M_A = 743 \text{ GeV}, \tan \beta = 51$$ $M_A = 903 \text{ GeV}, \tan \beta = 24$ $\mu+\mu- \to A^0 \to bb$ at M_A should in principle give competitive accuracies on M_A and Γ_A with $\sigma(\mu+\mu- \to A^0) \sim 0.1$ - 1 pb ### Physics Signatures: s-channel Resonance Production • $$e^+e^- \to \chi_2^0\chi_2^0 \to h^0\chi_1^0h^0\chi_1^0$$; $h \to b\bar{b}$, Identification and determination of mass of χ^0 and χ^+ through decays into bosons highlights the need of excellent parton energy resolution and b-tagging: | Particle | Mass
(GeV) | No Rad | ISR | ISR+BS $\delta E/E$ =0 | ISR+BS
=0.025 | | |------------|---------------|------------|--------|------------------------|------------------|------------| | Model I | 042.2 | + 1.01 | 1 17 | 1 2 50 | 1 2 50 | 1 4 5 4 | | χ_2^0 | 643.2 | ± 1.01 | ± 1.17 | ± 2.58 | ± 3.59 | \pm 4.54 | at 0.5 TeV $\sigma M_{\chi}/M_{\chi} \sim 0.005$ -0.01 for M \sim 200 GeV at 3 TeV $\sigma M_{\chi}/M_{\chi} \sim 0.01$ -0.05 for M = 600-900 GeV # Physics Signatures: Energy Resolution in Multi-Jet Final States $$e^+e^- ightarrow ilde{\mu}_R^+ ilde{\mu}_R^- ightarrow \mu^+ \mu^- ilde{\chi}_1^0 ilde{\chi}_1^0$$ arXiv:1006.2547 ### Smuon Mass reconstruction accuracy for different assumptions | | $\delta p_{\rm t}/p_{\rm t}^2$ | \sqrt{s} > | Data | Pol | BX | $(M\pm\sigma_{M})$ | (GeV) | |---|------------------------------------|-----------------|----------------|-----------------|----|--------------------|-------------------| | | $(\times 10^{-5} {\rm GeV^{-1}})$ | (GeV) | Set | (e^{-}/e^{+}) | | $ ilde{\mu}_R^\pm$ | $ ilde{\chi}^0_1$ | | | 0. | 2950 | S | 0/0 | 0 | 1106.3 ± 2.9 | 558.8 ± 1.3 | | 0 | 0. | 2500 | S | 0/0 | 0 | 1098.8 ± 2.6 | 555.4 ± 1.2 | | | 0. | 2500 (ISR only) | S | 0/0 | 0 | 1109.2 ± 3.2 | 555.4 ± 1.2 | | | 0. | 2500 | S (No FSR Cor) | 0/0 | 0 | 1095.3 ± 3.2 | 557.7 ± 1.3 | | | 2. | 2500 | S | 0/0 | 0 | 1104.6 ± 2.9 | 560.0 ± 1.7 | | | 2. | 2500 | S (G4+Reco) | 0/0 | 0 | 1107.1 ± 2.8 | 560.1 ± 1.5 | | | 4. | 2500 | S | 0/0 | 0 | 1102.8 ± 2.9 | 557.2 ± 2.8 | | | 6. | 2500 | S | 0/0 | 0 | 1098.8 ± 3.1 | 559.1 ± 3.6 | | | 8. | 2500 | S | 0/0 | 0 | 1101.0 ± 3.4 | 564.2 ± 4.0 | | | 20. | 2500 | S | 0/0 | 0 | 1107.5 ± 4.2 | 575.7 ± 5.3 | | | 2. | 2500 | S+B (0.8) | 0/0 | 0 | 1107.5 ± 15.5 | 542.5 ± 11.3 | | | 2. | 2500 | S+B (0.9) | 0/0 | 0 | 1107.5 ± 14.4 | 551.2 ± 12.0 | | | 2. | 2500 | S+B (0.8) | 80/0 | 0 | 1107.7 ± 8.7 | 542.6 ± 4.6 | | | 2. | 2500 | S+B (0.8) | 80/60 | 0 | 1118.5 ± 6.1 | 551.3 ± 3.0 | | | 2. | 2500 | S+B (0.8) | 80/60 | 5 | 1105.7 ± 6.3 | 549.4 ± 3.9 | | | 2. | 2500 | S+B (0.8) | 80/60 | 20 | 1113.2 ± 6.8 | 550.3 ± 3.4 | #### Physics Signatures: Energy Resolution in Leptonic Final States EW observables (σ , A_{FB} , A_{LR}) with beam polarization in e+e- $\rightarrow \mu\mu$, bb, tt sensitive to virtual contribution of new particles with M >> E_{cm} EW fits emphasise efficient flavour tagging, quark charge determination in highest energy jets and beam polarization ### Physics Signatures: Electro-weak Fits #### Complete the SM through t-channel/fusion channels Suppressed SM processes (H(120) $\rightarrow \mu + \mu -$, H(180) \rightarrow bb, H \rightarrow Z γ , HH production through g_{HHH}) become accessible at multi-TeV energies due to log s increase of WW fusion process and enhancement w/ polarised beams ### Physics Signatures: Fwd Processes #### $\gamma\gamma$ \rightarrow hadrons in multi-TeV collisions At CLIC ~15 TeV/train dumped in detector ($|\cos \theta| < 0.98$) Preserving accuracy in measurements requires special care (timing, LHC jet clustering algorithms, kinematic fits, ...) effects studied on fully sim + reco events: | Nb. of BXs | $N_{\rm bkg}$ | $N_{ m signal}$ | M_A (GeV) | | |-----------------------------|---------------|-----------------|------------------|------------------| | of overlayed $\gamma\gamma$ | | | 4-jet | semi-incl. | | 0 | 76 | 222±19 | 1137.4 ± 3.3 | 1136.7 ± 3.4 | | 5 | 77 | 224 ± 20 | 1144.4 ± 3.8 | 1135.9 ± 3.7 | | 20 | 102 | 208±20 | 1160.7 ± 6.9 | 1139.9 ± 5.4 | | 40 | 96 | 183±20 | 1167.2 ± 8.2 | 1134.1 ± 7.2 | arXiV:1006.5659 ### Machine-induced backgrounds and benchmarks #### Impact of LHC limits on lepton collider energy scale How are LHC limits on strongly interacting particles impacting the likely spectrum of the weakly interacting particles a lepton collider wants to access in SUSY? Coupling of MSUSY with slepton and gaugino masses is a prejudice derived from highly constrained models (cMSSM, mSUGRA, NUHM) used so far for benchmarking In more generic MSSM models, such as the pMSSM, coupling becomes quite weak: (see also detailed analyses of Hewett *et al* arXiv:1103.1697) Preliminary results of analysis imposing flavour constraints, Ωh^2 and LHC limits for 1 ab⁻¹ (20000 pMSSM points of which 1300 accepted) (MB, A Arbey, N Mahoudi): ### Energy and Luminosity: SUSY Scale and LHC Limits #### Impact of LHC limits on lepton collider energy scale Energy and Luminosity: SUSY Scale and LHC Limits | Process | Signature | Detector
Challenges | Machine
Challenges | |---|----------------------------------|---|---| | H^0 , $A^0 \rightarrow bb$
$H^+H^- \rightarrow tb$ | Multi-jets | b tagging
δE _{jet} w/ kin fitting | $\delta E_{_{beam}}$ | | Gaugino pairs,
χ → W/Z/h | Multi-jets+ E _{missing} | dEjets w/o kin fitting
Jet clustering | $\delta E_{_{beam}}$, bkg | | Slepton pairs | Leptons+
E _{missing} | Lepton id
δE at high E | L vs E _{beam} Threshold scan
Polarisation | | Squark pairs | Multi-jets+ E _{missing} | δE _{jet} at highest E | | | EW observables in μμ, bb, tt | Multi-jets,
Fwd | b tagging at highest E
Quark charge, Fwd | Polarisation, bkg | | ννΗ → μμ
ννΗ → bb | Fwd
Fwd b jets | Fwd E reco
Fwd b tagging | bkg | | ννΗΗ → bbbb | Fwd b jets | Fwd b tagging,
Jet clustering | L, bkg, Polarisation | | vvWW / vvZZ | Multi-jets
Fwd | W/Z separation, Fwd | bkg |