
�

Introduction to Swift
Parallel scripting for distributed systems

Mike Wilde
wilde@mcs.anl.gov

Computation Institute, University of Chicago
and Argonne National Laboratory

www.ci.uchicago.edu/swift
1

Swift is…

• A language for writing scripts that:
– Process large collections of persistent data
– with large and/or complex sequences of

application programs
– on diverse distributed systems
– with a high degree of parallelism
– persisting over long periods of time
– surviving infrastructure failures
– and tracking the provenance of execution

2

A simple Swift script
type imagefile; // Declare a “file” type.

app (imagefile output) flip(imagefile input) {
{
 convert "-rotate” 180 @input @output ;
}

imagefile stars <"orion.2008.0117.jpg">;
imagefile flipped <"output.jpg">;

flipped = flip(stars);
3

Parallelism via foreach { }
type imagefile; // Declare a “file” type.

(imagefile output) flip(imagefile input) {

 app {

 convert "-rotate" "180" @input @output;

 }

}

imagefile observations[] <simple_mapper; prefix=“orion”>;

imagefile flipped[] <simple_mapper; prefix=“orion-flipped”>;

foreach obs,i in observations {
 flipped[i] = flip(obs);
}

Name
outputs

based on inputs

Process all
dataset members

in parallel
4

Why script in Swift?

• Write scripts that are high-level, simpler, and
location-independent: run anywhere
– Higher level of abstraction makes a workflow script

more portable than “ad-hoc” scripting

• Coordinate execution on many resources over
long time periods
– This is very complex to do manually – Swift

automates it

• Enables restart of long running scripts
– Swift tracks jobs in a parallel script completed

5

Swift runs on Cluster and Grids

Grid Protocols

Grid Resources at UW

Grid
Storage

Grid
Middleware

C
o

m
p

u
t

i
n

g
C

l
u

s
t

e
r

Grid Resources at ANL

Grid
Middleware

C
o

m
p

u
t

i
n

g
C

l
u

s
t

e
r

Grid Resources at UCSD

Grid
Middleware

C
o

m
p

u
t

i
n

g
C

l
u

s
t

e
r

Grid Client

Application
User

Interface

Swift & Grid
Middleware

Resource,
Workflow
And Data
Catalogs

Grid
Storage

Grid
Storage

Swift runs on the grid client or “submit host”
• Sends jobs to one or more grid sites using GRAM‏ and Condor-G
• Sends files to and from grid sites using GridFTP
• Directory to locate grid sites and services: (ReSS)‏
• Can also run on local hosts, or directly on a local cluster
• Can overlay a faster scheduling mechanism (Coasters, Falkon)

6

Workflow
Status

and logs

swift
command

launcher

launcher

f1

f2

f3

Worker Nodes

App
a1

App
a2

Using Swift

SwiftScript
App
a1

App
a2

Data

f1 f2 f3

site
list

app
list

Provenance
data

7

Swift programs

• A Swift script is a set of functions
– Atomic functions wrap & invoke application programs

– Composite functions invoke other functions

• Data is typed as composable arrays and structures
of files and simple scalar types (int, float, string)

• Collections of persistent file structures are
mapped into this data model as arrays and
structures

• Members of datasets can be processed in parallel

• Statements in a procedure are executed in data-flow
dependency order and concurrency

• Variables are single assignment

• Provenance is gathered as scripts execute 8

Running swift

• Fully contained Java grid client
• Can test on a local multicore machine
• Can run directly on PBS or

Condor clusters

• Runs on multiple clusters over Grid
interfaces
– Uses GRAM2 (or GRAM5)
– Can use Condor-G if that’s on submit host

9

Swift case study: Protein Folding
1.

ype RamaMap;
2.

ype RamaIndex;
3.

ype SecSeq;
4.

ype Fasta;
5.

6.

ype Protein {
7.

 RamaMap map;
8.

 RamaIndex index;
9.

 SecSeq secseq;
10.

 Fasta fasta;
11.

 PDB native;
12.

13.

ype PDB;
14.

ype OOPSLog;
15.

16.

ype ProtSim {
17.

 PDB pdb;
18.

 OOPSLog log;
19.

20.

ype PSimCf {
21.

 float st;
22.

 float tui;
23.

 float coeff;
24.

25.

ype ProtGeo;

10

Swift case study: Protein Folding

1. app (ProtGeo pgeo) predict (Protein pseq)
2. {
3. PSim @pseq.fasta @pgeo;
4. }

1. (ProtGeo pg[]) doRound (Protein p, int n) {
2. foreach sim in [0:n-1] {
3. pg[sim] = predict(p);
4. }
5. }
6.
7. Protein p <ext; exec="Pmap", id="1af7">;
8. ProtGeo structure[];
9. int nsim = 10000;
10. structure = doRound(p, nsim);

11

Swift case study: Protein Folding
1 (ProtSim psim[]) doRoundCf (Protein p, int n, PSimCf cf) {
2 foreach sim in [0:n-1] {
3 psim[sim] = predictCf(p, cf.st, cf.tui, cf.coeff);
4 }
5 }

1 (boolean converged) analyze(ProtSim prediction[], int r, int numRounds)
2 {
3 if(r == (numRounds-1)) {
4 converged = true;
5 }
6 else {
7 converged = false;
8 }
9 }

12

Swift case study: Protein Folding
1. ItFix(Protein p, int nsim, int maxr, float temp, float dt)
2. {
3. ProtSim prediction[][];
4. boolean converged[];
5. PSimCf config;

1. config.st = temp;
2. config.tui = dt;
3. config.coeff = 0.1;

1. iterate r {
2. prediction[r] =
3. doRoundCf(p, nsim, config);
4. converged[r] =
5. analyze(prediction[r], r, maxr);
6. } until (converged[r]);
7. }

13

Swift case study: Protein Folding
1. Sweep()
2. {
3. int nSim = 1000;
4. int maxRounds = 3;
5. Protein pSet[] <ext; exec="Protein.map">;
6. float startTemp[] = [100.0, 200.0];
7. float delT[] = [1.0, 1.5, 2.0, 5.0, 8.0];
8. foreach p, pn in pSet {
9. foreach t in startTemp {
10. foreach d in delT {
11. ItFix(p, nSim, maxRounds, t, d);
12. }
13. }
14. }
15. }

1. Sweep();

14

The Variable model

• Single assignment:
– Can only assign a value to a var once
– This makes data flow semantics much

cleaner to specify, understand and
implement

• Variables are scalars or references to
composite objects

• Variables are typed
• File typed variables are “mapped” to

files 15

Data Flow Model

• This is what makes it possible to be
location independent

• Computations proceed when data is
ready (often not in source-code order)

• User specifies DATA dependencies,
doesn’t worry about sequencing of
operations

• Exposes maximal parallelism

16

Swift statements

• Var declarations
– Can be mapped

• Type declarations

• Assignment statements
– Assignments are type-checked

• Control-flow statements
– if, switch, foreach, iterate

• Function declarations

17

Passing other scripts as data
• When running scripts in other languages from

Swift, the target language interpreter can be
the “app” executable (eg: app { R … })

• Powerful technique for running scripts in:

• sh, bash
• Perl, Python, Tcl
• R, Octave

• These are often pre-installed at known places
• No application installation needed

• Need to deal with library modules manually 18

Data Management

• Directories and management model
– local dir, storage dir, work dir
– caching within workflow
– reuse of files on restart

• Makes unique names for: jobs, files, wf
• Can leave data on a site

– For now, in Swift you need to track it
– In Pegasus (and VDS) this is done automatically

19

Mappers and Vars

• Vars can be “file valued”
• Many useful mappers built-in, written in

Java to the Mapper interface
• “Ext”ernal mapper can be easily written

as an external script in any language

20

Mapping outputs based on input names
type pcapfile;
type angleout;
type anglecenter;

app (angleout ofile, anglecenter cfile) angle4 (pcapfile ifile)
{ angle4 @ifile @ofile @cfile; }

// Map inputs based on patterns
pcapfile pcapfiles[]<filesys_mapper; prefix="pc", suffix=".pcap">;

angleout of[] <structured_regexp_mapper;
 source=pcapfiles, match="pc(.*)\.pcap",
 transform="_output/of/of\1.angle">;

anglecenter cf[] <structured_regexp_mapper;
 source=pcapfiles,match="pc(.*)\.pcap",
 transform="_output/cf/cf\1.center">;

foreach pf,i in pcapfiles {
 (of[i],cf[i]) = angle4(pf);
}

Name outputs
based on input

21

Coding your own “external” mapper

awk <angle-spool-1-2 '
BEGIN {
 server="gsiftp://tp-osg.ci.uchicago.edu//disks/ci-gpfs/angle";
 }
{ printf "[%d] %s/%s\n", i++, server, $0 }’

$ cat angle-spool-1-2
spool_1/anl2-1182294000-dump.1.167.pcap.gz
spool_1/anl2-1182295800-dump.1.170.pcap.gz
spool_1/anl2-1182296400-dump.1.171.pcap.gz
spool_1/anl2-1182297600-dump.1.173.pcap.gz
…
$./map1 | head
[0] gsiftp://tp-osg.ci.uchicago.edu//disks/ci-gpfs/angle/spool_1/anl2-1182294000-

dump.1.167.pcap.gz
[1] gsiftp://tp-osg.ci.uchicago.edu//disks/ci-gpfs/angle/spool_1/anl2-1182295800-

dump.1.170.pcap.gz
[2] gsiftp://tp-osg.ci.uchicago.edu//disks/ci-gpfs/angle/spool_1/anl2-1182296400-

dump.1.171.pcap.gz
…

22

Site selection and throttling

• Avoid overloading target infrastructure
• Base resource choice on current

conditions and real response for you
• Things are getting more automated.

23

Clustering and Provisioning

• Can cluster jobs together to reduce grid
overhead for small jobs

• Can use a “provisioner” to hold
processors
– Coasters (built in) or Falkon (research tool)
– for better performance, lower overhead,

less scheduler delays

• Can use a provider to go straight to a
cluster (PBS, Condor)

24

Testing and debugging
techniques

• Debugging
– Trace and print statements
– Put logging into your wrapper
– Capture stdout/error in returned files
– Capture glimpses of runtime environment
– Kickstart data helps understand what happened at runtime
– Reading/filtering swift client log files
– Check what sites are doing with local tools - condor_q, qstat

• Log reduction tools tell you how your workflow
behaved

25

Other Workflow Style Issues

• Expose or hide parameters
• One atomic, many variants
• Expose or hide program structure
• Driving a parameter sweep with

readdata() - reads a csv file into struct[].
• Swift is not a data manipulation

language - use scripting tools for that

26

Swift: Summary
• Clean separation of logical/physical concerns

– XDTM specification of logical data structures

+ Concise specification of parallel programs
– SwiftScript, with iteration, etc.

+ Efficient execution (on distributed resources)‏
– Karajan+Falkon: Grid interface, lightweight dispatch, pipelining,

clustering, provisioning

+ Rigorous provenance tracking and query
– Records provenance data of each job executed

 Improved usability and productivity
– Demonstrated in numerous applications

http://www.ci.uchicago.edu/swift
27

To learn more…

• www.ci.uchicago.edu/swift
– Quick Start Guide:

• http://www.ci.uchicago.edu/swift/guides/quickstartguide.php

– User Guide:
• http://www.ci.uchicago.edu/swift/guides/userguide.php

– Introductory Swift Tutorials:
• http://www.ci.uchicago.edu/swift/docs/index.php

28

http://www.ci.uchicago.edu/swift

Acknowledgments
• Swift effort is supported in part by NSF grants OCI-

721939, and PHY-636265, NIH DC08638, and the
UChicago/Argonne Computation Institute

• The Swift team:
– Ben Clifford, Ian Foster, Mihael Hategan, Sarah Kenny, Mike

Wilde, Zhao Zhang, Yong Zhao

• Java CoG Kit used by Swift developed by:
– Mihael Hategan, Gregor Von Laszewski, and many

collaborators

• User contributed workflows and application use
– U. Chicago Open Protein Simulator Group (Drs. Freed &

Sosnick); U.Chicago Radiology and Human Neuroscience
Lab, (Dr. S. Small)

29

