

Accelerator Parameters for Project X ICD-1&2

Valeri Lebedev Fermilab

Workshop on Applications of High Intensity Proton Accelerators
Fermilab
October 19-21, 2009

Where are we, and Where would we go with ICD-1?

- Neutrino program 300 kW \rightarrow 2 MW (Project X)
 - ♦ Present
 - Numi, MiniBooNE, SciBooNE
 - ♦ Future*
 - MINERvA(2011), NOvA (2014), MicroBooNe (2014), LBNE(2018)
- Collider program
 - ♦ Present
 - CDF + D0 = ~1500 people for both collaborations
 - ♦ Future
 - Participation in LHC (CMS, ...)
- Possible future HEP experiments additional to the neutrino program
 - ♦ Mu2e (2016) high priority, problem with power upgrade with SlowExtr
 - ♦ g-2(2012- 2016?) not approved, high probability of time conflict with Mu2e (competes for the same hardware antiproton source)
- Short conclusions
 - Some increase in neutrino physics effort;
 - ◆ CDF + DO (1500)→Mu2e (100) + decommissioning of antiproton source
 - ♦ The program in HEP does not look too ambitious

^{*}All hands meeting, Pier Oddone, March 20, 2009

Project X ICD-1

- Based on
 - 8 GeV pulsed linac (~7 GeV, ILC type)
 - And upgrades in MI and Recycler
- Delivers
 - ◆ 2 MW at 60-120 GeV (MI)
 - \bullet 500 kW at 8 GeV (1.25 ms \times 20 mA \times 2.5 Hz)

Pros and Cons

- Develops ILC technology looks like a promising upgrade for muon collider or neutrino factory
- Does not open a diverse physics program for near future
 - ◆ Can support only 1 experiment for any given time
 - Problems with beam packaging (pulse length, repetition rate)

Project X ICD-2

- ICD-2 tries to address the deficiencies of ICD-1
- Recent developments
 - First discussions end of March, 2009
 - Directorate created a committee to look into physics program, Apr.2009
 - ♦ Strong support of ICD-2 from Physics Advisory Committee (Jun. 2009)
 - ◆ ICD-2 document and cost estimate is expected by the end of Oct. 2009
 - Drafts are ready
 - Workshop on physics, November 2009
- ICD-2 is based on 2 MV CW linac
 - ◆ Energy of 2.X GeV is set by kaon production threshold (1.6 GeV)
 - ♦ Beam current of 1 mA is set by a compromise between
 - Fast growing problem of beam injection into RCS or Recycler/MI with current reduction
 - Reasonably small total power
 - ⇒ Larger beam current would make injection easier but presently there are no users capable to use larger power
 - RF separation allows one to run a few experiments with independently controlled time structures of the beam

ICD-2 concept

- Replacement of RCS by pulsed linac can be used too
 - price tag will drive the choice (pros and cons are discussed below)

ICD-1 & 2 "wide definitions"

- ICD-1 is based on a pulsed 8 GeV linac (RCS from 2 GeV is also possible)
 - ♦ Its infrastructure supports
 - 2 MW in MI
 - Single experiment with slow extraction from Debuncher
 - Fast extraction from Recycler to other experiments
- ICD-2 is based on 2 GeV CW linac
 - ♦ Its infrastructure supports
 - 2 MW in MI
 - Few experiments running in parallel for rear decays of muons and kaons
 - Fast extraction from Recycler to other experiments
- Project X evolution reminds the development of CEBAF conception

RCS versus pulsed linac for beam acceleration from 2 to 8 GeV

- Pulsed linac advantages
 - ◆ Can be upgraded to repetition rate above 20 Hz if required
 - Can be used for muon acceleration
 - Starting from 1 GeV for ε_{n_rms} =60 mm mrad (high emittance MC)
 - ⇒ 20 GeV for 4 pass recirculator (three 360 deg. arcs) with 1 GeV preaccelerator
- Pulsed linac drawbacks/problems
 - Looks more expensive than synchrotron
 - Requires Recycler anyway if
 - The beam current is limited by CW linac to 1 mA
 - and foil strip injection is used
 - o laser striping with long pulse is risky
 - ♦ Inefficiency of strip injection (~3%) at 8 GeV results in 4 times larger beam power at the injection beam damp
- RCS requires additional R&D
- The question, which way to go, has to be addressed soon

Foil striping versus laser stripping

- Laser stripping looks very attractive but
 - It was not demonstrated in real operations
 - It works in a narrow energy region and is not a good choice
 - for RCS or
 - any other ring where the injection energy can be changed
- Foil stripping is simple and well tested in real operations but
 - ◆ It has a problem with foil overheating
 - Prefers large injection current
 - Can be mitigated by β -function increase at the foil
- There is no injection scheme which would allow simple transition between laser and foil stripping
 - Foil striping requires large beta-functions
 - Laser striping requires at least one beta-function to be small

RCS versus Proton Driver

- Few design choices resulted in significant cost reduction
 - High injection energy
 - High periodicity and small beta-functions
 - ⇒ Small aperture, small dipoles and quads
- RCS features
 - No transition crossing
 - ♦ Zero dispersion in cavities
 - Reasonably small transverse impedance
 - ◆ Small aperture matches MI acceptance (40 mm mrad)
 - ♦ Relatively small space charge tune shift (~0.07)
 - Resonantly driven magnets at 10 Hz
 - 6 injections to fill MI
 - ♦ Strip foil injection (2200 turns, foil T_{max}=1500 K°)
 - Laser stripping is difficult due to 1.2% energy change during injection

Upgrades of ICD-1 for Muon Collider

- ICD-1 allows one to have ~0.15 MW power without any upgrade at 2.5 Hz operation
 - Bunch length as required for muon collider
 - ♦ Compressor ring is required
- At 8 GeV and 15 Hz repetition rate the beam power with beam quality required by muon collider is limited to ~1 MW,
 - ♦ Upgrade of entire linac RF system is required
 - \bullet P~ γ^4 , therefore ~12 GeV beam is required for 4 MW at 15 Hz
- If we want to use linac (β =1) for muon acceleration we need to have space for muon reinjection from the very beginning (can be very expensive to add it later)

<u>Possible savings</u>

- Building initially only a 6 GeV linac is possible
 - Injection goes directly to MI
 - Allows to save money at initial construction

Upgrades of ICD-2 for Muon Collider

- ICD-2 allows one to have ~0.34 MW power without upgrade at 10 Hz
 - Bunch length as required for muon collider
 - Compressor ring is required
- Running an experimental program with CW beam puts severe limitations on possible upgrades
 - ◆ Upgrade of 2 GeV CW linac is a serious problem
 - Increasing installed CW power to 8 MW would allow to reach 1 MW power at 8 GeV and 15 Hz repetition rate
 - Does not look as a prudent investment
 - Combination of pulsed and CW RF sources was suggested
 - R&D are required to see a feasibility at required power level
 - The problem originates from small current of CW linac. It can be resolved with
 - o long pulse pulsed linac and
 - o laser striping
 - ♦ An upgrade of RCS or pulsed linac to 1 MW looks straight forward
- Same as for ICD-1, 8 GeV limits the beam power to ~1 MW at 15 Hz

Possible savings for ICD-2

- 1 GeV CW linac is possible if RCS is used but it would require larger frequency sweep in RCS (additional cost and problems)
 - ◆ MI power: 2 MW ⇒ 1 MW
 - Mu2e is possible
 - Kaons are not but can be added later
- Reduction of beam energy to 6 GeV linac does not look promising
 - ◆ Impossible for RCS
 - need Recycler for beam storage
 - Requires laser stripping in MI for pulsed linac
 too long injection time
- Reduction of linac beam current below 1 mA does not buy much

Ideal Project X Scenario

- Depending on priority start g-2 experiment or antiproton physics in Accumulator after Tevatron shutdown, 2012-2013.
 - ◆ In contrast to mu2e the g-2 experiment does not require decommissioning of Antiproton source
- Build ICD-2 with RCS*
 - Finish 2 GeV linac by 2016
 - Build the civil infrastructure for mu2e and be ready to start the experiment fed by CW linac in 2016
 - 1 GeV is possible but does not look promising. Mu2e can stay at 1 GeV even for 2.X GeV operation
 - ♦ Finish RCS by 2018
 - 2 MW in MI should be available shortly after
 - Finish civil construction for kaon and muon physics at 2.X GeV by ~2020
 - First experiments should be ready to go shortly after that

^{*} RCS can be replaced by pulsed linac. It increases the cost but positions us better for neutrino factory

Conclusions

- ICD-2 looks as a way to go
 - ◆ Choice between RCS and Pulsed linac need to be done soon. It is determined by
 - Cost and
 - Upgradability
- There are no obvious cost reduction schemes without sacrificing machine parameters or paying additional money in the future
 - Suggestions are welcomed