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Background, Motivation, and Goals

Gaussian Distribution, Mean = 0 Events = 1000000
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Classic Example: forward-backward asymmetry (Agg)
. measured in collider detectors:
@ Can we use a simple constant

multiplicative factor A®®! = R . Afinite I
L Outgoing particle momentum
@ If so, how much statistics needed to I

. s A . -
get reliable results, especially in the _ I \6cm _ Positive Beam Direction
limit of small asymmetries ? I
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Background, Motivation, and Goals

@ We start with a single Gaussian with a mean of 1 as a good working
model to build a foundation and give good insights into more
complicated distribution models

@ Examples from collider physics have shown that this approximation
sometimes works

@ It is not obvious if a linear extrapolation technique should work

@ Since we typically use MC methods to estimate such values, we need
to understand whether we can confidently use a constant R to linearly
extrapolate, and understand the amount of statistics needed to get a
reasonable measurement of it
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Study 1: Monte Carlo Simulation

number of pseudo-experiments

@ In our simple Gaussian model, A is linearly proportional to u (the
mean of the distribution)
o Example: ;= 0.1 corresponds to A ~ 8% which is what we
typically see in forward-backward asymmetry top quark measurements

at the Tevatron

@ Run many MC pseudo-experiments each with a large number of
events, get distributions for Afota! Afinite 3nq R:

Total Asymmetry, Mean = 0.1 Events = 1e+06

Finite Asymmetry, Mean = 0.1 Events = 1e+06

Ratio (finiteftotal), Mean = 0.1 Events = 1e+06
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Study 1: Monte Carlo Simulation

Ratio (finite/total), Mean = 0.1 Events = 100000 Ratio (finite/total), Mean = 0.1 Events = 10000
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@ With enough statistics (i.e. large ), measurements of R are very accurate

@ As N decreases, measurement of R becomes unreliable, and can no longer

correctly reproduce Aft! from Afinite

@ This is observed for all values of p
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Study 1: Monte Carlo Simulation

@ With this understanding, we now aim to quantify this behavior to
properly understand how many MC events in the original distribution,
N, are needed to give reliable measurements of R

o We define f as the fraction of pseudo-experiments with R < 0.5 (very
far from expected value)

Fraction PE w ratio <5 (total PE= 100000), Mean = 0.1 Fraction PE wi ratio <5 (total PE= 100000}, Mean = 0.01 Fraction PE w ralio <5 (1tal PE= 100000), Moan = 0.001
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Study 1: Monte Carlo Simulation

@ Want f =~ 0, define a threshold value and observe the relationship
between the number of events needed for reliable measurements and p

o N falls as %

@ Measurements of R for all
values of u with enough

Threshold number of events at which fraction of pseudo-experiments < 5 drops to 0

10" e
o statistics give the same value
‘01E§ E

2 10

G oL : @ Conclusion is that R is indeed

g 10 constant for all  for this simple

5 10"E E .

10k Gaussian model, and a huge

S 10°F E ..

8 10k amount of MC statistics are

o needed to accurately measure
A the actual value for small y (or
107 vl sl sl sl equivalently small A)

10 10 10 10 10 10 10 10 10

Mean of Gaussian
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Study 2: Closed Form Statistical Solution

@ Let's take a closer look at why the MC methods break down

‘Scatterplot of AFB,_total VS AFB._reduced for Mu=2E-02, Events=1E6 ‘Scatterplot of AFB,_total VS AFB_reduced for Mu=2E-02, Events=1E4
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Require At (denominator of R) to be greater than at least 1o
away from 0 — to avoid the potential divide by 0 problem (math
jargon: this is where the distribution transitions to a Cauchy regime)
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Study 2: Closed Form Statistical Solution

@ The statistical question becomes: how many events, N, are required
for the mean of Arg™® to be some number (k - o) away from 0, thus
giving reliable measurements

Atotal
k

@ Using statistics (see backup slides), we are able to find N as a
function of u for our single Gaussian model:

. (1+erf(%)>

O'AFBtotaI -

N =2k 2
erf (ﬁ)
@ Some limiting cases:
e Asy —0, N — o0
e Using the approximation erf [u for small p, we find that

N o« =5 which is precisely What we just saw from our MC study

Katrina Colletti (Texas A&M) Extrapolation Techniques June 8, 2015 9/13



Study 2: Closed Form Statistical Solution

@ Closed form
solution: blue
(for k =2)

o MC data: red =

o Excellent
agreement!
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Study 3: Closed Form Numerical Solution

Gaussian Distribution, Mean = 0 Events = 1000000

@ We calculate R as a function
of 1 using Mathematica e

@ Setc =1.0 frome

@ Plot R in the limit 4 — 0 B c
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Conclusions

@ We have used three methods to study the linear extrapolation of
Afinite to an inclusive Aot

@ While we have only studied the simple Gaussian model, we observed
that a linear extrapolation can be used, and while MC methods work
reliably (even for small A) they can require much more significant
statistics than expected

@ Our results have the potential to be applied for many different
asymmetry measurements in collider experiments, and have already
been useful at the Tevatron for the tt forward-backward asymmetry
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Thank You For Listening!
Any Questions?
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Backup Slides: The Statistical Solution Calculation

We need enough statistics such that A}"Bt‘”, the denominator of R, is more
than 1 sigma away from 0 (we will set it to be k, where k will be
determined later). In other words, we want to know how many events it
takes in a pseudo-experiment to ensure the mean of the full asymmetry
will be k standard-deviations away from zero.

To do this we start with the equation

A
O'A’t;_gBtal == k (1)

where 092/ is the variation (or uncertainty) of the measured value of

Atetal - We will find both o geer and Ai! as functions of N and p and

FB
substitute them into Eq. 1 to get the functional relation between N and p
for “good statistics”.
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Backup Slides: The Statistical Solution Calculation

We begin with our definition of asymmetry,
Ny — N_
Atota/ + 2
Ny + N_ 2)

where Ny = C+ D and N_ = A+ B as on Slide 2. Next we define
N = Ny + N_ as the total number of events in the original Gaussian
distribution, and rewrite this as:

2N, — N
—N (3)

We note that since our distributions are Gaussian, we can write Ny in
terms of N and pu, with the relation given by

Atotal

dx e~ (x—1)?/2

vl

= I;I(erf (\%) + 1) (4)

Katrina Colletti (Texas A&M) Extrapolation Techniques June 8, 2015 15 /13



Backup Slides: The Statistical Solution Calculation

Plugging this in to Eq. 3 and reducing, we get

2 e (35) 1) -
N
= erf (\%) (5)

We next find O ptotal by beginning with the definition given in Bevington
(92) applied to our problem,

total __
AFB -

6Atotal 6Atotal
FB >U X ( FB )0'/\/-

TAEE = ( N, ON (©)

Taking a simple derivative of A% from Eq. 3 gives us
DARElN 2 .
( N, )= N ()
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Backup Slides: The Statistical Solution Calculation

To be consistent with the previous study, we fix N and allow N, to vary.
This means that oy = 0, and from simple statistics

on, =/ Ny (8)
Plugging Eqgs. 7 and 8 into Eq. 6, we get

2
O'Ag)éal == N A/ N+. (9)

Plugging Eq. 4 into this, we get

2 N W
O'A'E?Bta/ = N . E (erf (%) —+ 1)

- /%/ (1+erf(\%)> (10)
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Backup Slides: The Statistical Solution Calculation

Finally, plugging Egs. 5 and 10 back into Eq. 1 gives us

() -2

and solving for N, we get

2 .
2k (1 +erf (ﬁ))
2 \2
erf (45)
This is, as we set out to solve for, the number of events it takes per
pseudo-experiment to ensure the mean of the full asymmetry will be k
standard-deviations away from zero, and thus give good statistics.

Discussion of the implication of this result is included in the main slides.
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Study 3: Closed Form Numerical Solution

Atotal _ v2mo £m dx eXP(—(X_“)z) —exp(— ( X u)2 ]
- 27ra £ dx EXp( ) —+ exp ( X II«) ]
finite 27rcr L dx eXP(—ﬂ) exp( )]
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