Tumble Polishing of SRF Cavities @ Cornell

Zachary Conway

Presenter: Georg Hoffstaetter

Cornell University

Laboratory for Elementary-Particle

Physics

Tumble Polishing @ Cornell

Outline

- What is tumble polishing? Why tumble polish?
- How does it work and compare to centrifugal barrel polishing?
- An example
- Summary and plans

Collaborators:

- Hasan Padamsee
- Curtis Crawford

What is tumble polishing?

• Tumble polishing is an off-shoot of the KEK technique of centrifugal barrel polishing (T. Higuchi et al, "Centrifugal Barrel Polishing of L-Band Niobium Cavities," 10th SRF Workshop, Pg. 431.)

• We:

- 1. Fill the cavity with an abrasive Al₂O₃ ceramic media and DI H₂O mixture
- 2. Roll the cavity about the beam axis
- 3. Replace media every 24 hours
- 4. Repeat until finished, 20mu/day for 28rpm, if tumbling media is replaced daily
- Tumble polishing allows for precise control over the surface area polished, e.g. polish only the equator weld ± 1 ", polish only one cell, etc ...
- But tumble polishing does not remove material as fast as centrifugal barrel polishing, which rotates around two axes.

April 2010 TTC 2010 3

What is barrel polishing?

@ Cornell

Cavity Supported in a Tube

- Rotation Axis

Guide/Support Wheels

-Table Top

Simple Gear Motor Rotates a Wheel

Faster Material Removal Rate

e.g. the mass finishing model HZ 280 is much larger,

Will be at Cornell this fall.

Part/Cavity Position

-Rotation Axis

An example: the repair of LR9-1

- We employed tumble polishing to repair a pit defect which limited the performance of a nine-cell reentrant cavity fabricated by AES (in 2007).
- Originally this cavity quenched in the π -mode at $E_{acc} = 15$ MV/m at a weld pit in end cell number 1.
- After tumbling (to remove the defect), vertical electropolish (to smooth the surface) and H-degassing at JLAB this cavity now reaches 28 MV/m, Q0 of 1.6e10, with quench in end cell number 9.
- This demonstrates that tumble polishing is an effect option to repair pit-defects
- The following slides review this work

April 2010 TTC 2010 5

Initial LR9-1 Performace

LR9-1 Defect and Repair

Observed Defect

Tumble Polished Until Gone

After Tumble Polishing LR9-1

After Tumble Polishing LR9-1

Summary and Plans

- Tumble polishing is a quick and useful technique to fix pit defects. It is cheaper and simpler than centrifugal barrel polishing but it does not remove material as fast (only $20\mu m/day$ with regular media replacement).
- We have successfully employed tumble polishing to repair pit defects.
- Tumble polishing coupled with chemical surface polishing is effective at producing high Q and high gradient cavities.